
RL-TR-97-92, Volume I (of two)
Final Technical Report
September 1997

CERTIFICATION FRAMEWORK
VALIDATION FOR REUSABLE ASSETS -
PROJECT SUMMARY, VOLUME I (OF TWO)

Data & Analysis Center for Software,
KAMAN Sciences Corporation

Sharon Rohde and Karen Dyson,

of Software Productivity Solutions, Inc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19971027 045 DTIC QüÄLEnr mSPBÜTBD 3

Rome Laboratory
Air Force Materiel Command

Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-97-92, Volume I (of two) has been reviewed and is approved for
publication.

imtftdL //y«
APPROVED:

DEBORAH A. CERINO
Project Engineer

FOR THE DIRECTOR:
" JOHN A. GRANIERO, Chief Scientist

Command, Control, & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL/C3CB, 525 Brooks Road, Rome, NY 13441-4505. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions lor reducing this burden, to Washington Headguarters Services, Directorate tor Intormation

Operations and Reports 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01881, Washington, DC 20503.

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE

September 1997

3. REPORT TYPE AND DATES COVERED

Final Apr 94 - Feb 97
4. TITLE AND SUBTITLE

CERTIFICATION FRAMEWORK VALIDATION FOR REUSABLE ASSETS
PROJECT SUMMARY, VOLUME I (OF TWO)
G. AUTHOR(S)

Sharon Rohde and Karen Dyson of Software Productivity Solutions, Inc.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Data & Analysis Center for Software
KAMAN Sciences Corporation
Griffiss Business & Technology Park
775 Daedalian Drive
Rome. NY 13440-4909
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Rome Laboratory/C3CB
525 Brooks Road
Rome, NY 13441-4505

5. FUNDING NUMBERS

C - F30602-92-C-0158 T/32
PE -63728F
PR -2527
TA -02
WU-35

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-97-92, Vol I (of two)

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Deborah A. Cerino/C3CB/(31) 330-2054

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The purpose of this effort was to further develop, apply, and validate the Rome Laboratory Software Certification
Framework for designating various levels of confidence in the quality of reusable software. This effort fine-tuned the
Framework's ability to distinguish between reusable assets of differing quality.

The effort resulted in a two volume final technical report. Volume I - the Project summary, describes the complete
contractual effort. The report discusses how the quality assessment methodology, techniques, and metrics embodied
within the Rome Laboratory Software Quality Framework (SQF) could be applicable to the certification of reusable
assets. The report discusses potential upgrades and re-engineering the Rome Laboratory Software Quality
Framework (SQF). In addition, it also overviews the application of the Certification Framework to a small set of
software components (i.e., source code). Volume II - Certification Field Trial, fully details the procedures, collection
forms, results, and lessons learned from the application of the certification process to the software components.

14. SUBJECT TERMS

Software Certification, Software Assessment and Evaluation

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIETED

15. NUMBER OF PAGES

280
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

DTIC QUALITY DJCPS^ViSD 5

Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Table of Contents

Executive Summary 1

1.0 Introduction 3

1.1 Objectives and Tasks 3

1.2 Summary of Accomplishments 4

2.0 Software Quality Framework Upgrade 7

2.1 Evolution of the RC-SQF 7

2.2 Software Quality Framework (SQF) Overview -8
2.2.1 Structure of the SQF 10
2.2.2 Metric Elements 12
2.2.3 Important SQF Concepts 14

2.3 Recommended Modifications to SQF 15
2.3.1 Structural and Content Changes 16
2.3.2 Methodology of Application 18
2.3.3 Conformance to Standards 19
2.3.4 Scoring 19
2.3.5 Automation 20
2.3.6 Training and Packaging 20
2.3.7 Management of the Framework 20

2.4 SQF Re-engineering: The Guidelines Approach 21
2.4.1 Motivation for Reengineering and Repackaging the SQF 21
2.4.2 Guidelines Examples 22
2.4.3 Guidelines and Configuration Management 24
2.4.4 Analysis of Software Development Life Cycles 25

2.5 Re-engineered SQF 35
2.5.1 Re-engineering to Improve Adaptability 36
2.5.2 Re-engineering the Organizational Structure 38
2.5.3 Re-engineered Quality Factors Hierarchy 39
2.5.4 Re-engineered Tailoring Approach 42
2.5.5 Guidelines for Portability 53

2.6 Support of the PSM PE Working Group 63

3.0 SQF Application to Reuse Certification 67

3.1 Analysis of the SQF for Reuse Certification 67
3.1.1 SQF as a Code Inspection Checklist 67
3.1.2 Automated Static Analysis 67
3.1.3 Guidance for building quality factors into reusable code assets 68
3.1.4 Predictive quality model 68

3.2 Reuse Certification Code Checklists for Ada and C++ Assets - 69
3.2.1 Ada Code Inspection Checklist 69
3.2.2 C++Code Inspection Checklist 74

3.3 Automated Ada Style Guideline Checks 84

3.4 Guidance for Building Correctness into Code Assets 88

3.5 Predictive Model 96

4.0 Expansion of the Rome Laboratory Certification Framework 99

4.1 Field Trial and Pilot Studies 99
4.1.1 Field Trial with a C++ Code Asset 99
4.1.2 Support of Pilot Sites .'l21

4.2 Certification Framework's Applicability to Commercial Organizations „130
4.2.1 Commercial Standards Organizations-RIG 130
4.2.2 Survey of Commercial Organizations 131

4.3 Certification of Reusable Components (CRC) Web Pages 134
4.3.1 Cost/Benefit Model for Aggregate Defects 142

5.0 Conclusions 145

5.1 Project Summary _145

5.2 Lessons Learned 147
5.2.1 SQF-Related Lessons Learned 147
5.2.2 Certification Process and Field Trial Lessons Learned 148
5.2.3 Pilot Sites Lessons Learned 149

5.3 Future Research 150

References 151

Acronyms 155

Appendix A - PSM Working Group Meeting Minutes A-l

Appendix B - Code Inspection Checklist Sources B-l

Appendix C-Survey Data.... C-l

Appendix D - State-of-the-Art Report on Reuse Libraries D-l

List of Figures

Figure 1-1. Work Products Resulting from this Effort 5

Figure 2-1. SQF is a Collection of Techniques 8

Figure 2-2. The SQF Quality Model Hierarchy 9

Figure 2-3. The SQF Factor/Criteria Model 10

Figure 2-4. Attempting to Diagram the SQF Structure 11

Figure 2-5. Metric Elements for a Single Phase of the SQF 12

Figure 2-6. Excerpt from Phase C (Preliminary Design) Data Collection Form 14

Figure 2-7. Linked to Product/Activity and Reference 22

Figure 2-8. Example Guidelines for the Accuracy Criterion 22

Figure 2-9. The Waterfall Model 25

Figure 2-10. The Incremental Development Model 27

Figure 2-11. The Spiral Model 28

Figure 2-12. The Iterative Development Model 29

Figure 2-13. Timeboxing in the RAD Approach 30

Figure 2-14. OO Fountain Model 31

Figure 2-15. OO Life Cycle 32

Figure 2-16. An Example of a Maintenance Life Cycle 33

Figure 2-17. Origin of SQF Version 1.5 36

Figure 2-18. SQF 1.5 Data Collection Designed for Waterfall Process 37

Figure 2-19. New Quality Factor Hierarchy 40

Figure 2-20. Indicators Can Be Designed for All Hierarchy Levels 42

Figure 2-21. SQF Tailoring Process 43

iii

Figure 2-22. Tailoring by Merging SQF Inspections into Existing Process 44

Figure 2-23. Example Life Cycle Processes, Activities, and Products 52

Figure 2-24. Graphing Portability Indicators 60

Figure 3-1. Using Complexity Measures to Predict Defect Types 69

Figure 3-2. Method for Constructing Ada Code Inspection Checklist 69

Figure 3-3. Converting an SQF Question to a More Ada-Specific Interpretation 74

Figure 3-4. Combining Related SQF Questions 74

Figure 3-5. Converting an SQF Ratio Question to a Yes/No Question 74

Figure 3-6. C++ Code Inspection Checklist 75

Figure 3-7. Modifications to the Code Checklist 76

Figure 3-8. Summary of Implemented Style Guideline Checks in AdaQuest 2.2 85

Figure 3-9. Defect Density Indicator 94

Figure 3-10. Problem Report Closure Indicator 95

Figure 3-11. Work Progress Indicator for Units Passing Inspection 95

Figure 3-12. Work Progress Indicator for Units Passing Testing 95

Figure 3-13. Traceability Indicator 96

Figure 3-14. Test Completeness Indicator 96

Figure 4-1. Default Certification Process Used in the Field Trial 99

Figure 4-2. Timing and Effort of Activities 100

Figure 4-3. Comparison of Actual Effort to Predicted 109

Figure 4-4. Defect Detection 112

Figure 4-5. Asset's Defect Profile 114

Figure 4-6. Comparison of Asset's Defect Profile to Default Profile 115

Figure 4-7. Cumulative Effectiveness of Certification Steps . 116

Figure 4-8. Control Number Characterization ..123

IV

Figure 4-9. Pareto Analysis of Problem Reports 123

Figure 4-10. Error Category Pareto Analysis 124

Figure 4-11. Distribution of Error Categories 125

Figure 4-12. Recording of Analysis Hours 125

Figure 4-13. Recording of Actual Hours 126

Figure 4-14. Analysis Hours for CUB Components 127

Figure 4-15. Actual Hours for CUB Components 127

Figure 4-16. Severity Pareto Analysis 129

Figure 4-17. Distribution of Severity Categories 129

Figure 4-18. Problem Category Pareto Analysis 130

Figure 4-19. Survey Process 133

Figure 4-20. CRC Welcome Page 135

Figure 4-21. CRC Email Link 136

Figure 4-22. CRC Executive Summary Page 137

Figure 4-23. CRC Document Download Page 138

Figure 4-24. Adobe Acrobat Reader Window Showing CRC Volume 3 Document ..139

Figure 4-25. CRC Demonstration Page 140

Figure 4-26. CRC Demonstration Applet Window 141

Figure 5-1. Results of the ATD Project Built Upon the Accomplishments of CRC. ..145

List of Tables

Table 2-1. The RLSQF Data Collection Forms 11

Table 2-2. Metric Scoring Equations for the Questions in Figure 2-6 13

Table 2-3. Quality Factor Definitions [SQF95] 45

Table 2-4. Examples of Application/Environment Characteristics Related to Quality
Factors [BOW85] 46

Table 2-5. Quality Criteria Definitions [SQF95] 47

Table 2-6. Relationship of Quality Factors to Criteria [SQF95] 49

Table 2-7. Factor Interrelationships [BOW85] 51

Table 2-8. Portability Guidelines 56

Table 2-9. Portability Inspection Items and Measures 58

Table 2-10. Portability Inspection Checklist for Code 61

Table 2-11. SPS' Attempt at PSM PE Issue Categorization 65

Table 3-1. Code Inspection Checklist for Ada Code 71

Table 3-2. Modifications of Code Checklist 76

Table 3-3. Code Inspection Checklist for C++ Code 77

Table 3-4. AdaQuest Version 2.2 Auditor Checks 86

Table 3-5. Correctness Guidelines 92

Table 3-6. Correctness Inspection Items and Measures 93

Table 3-7. Explanatory Variables for Total Defects Prediction 97

Table 3-8. Added Explanatory Variables for Prediction of Defects by Type 97

Table 3-9. Relevance of Explanatory Variables to Defect Types 98

Table 4-1. Estimating Rework Effort from Figures 4-14 and 4-15 128

VI

Contributors to the ATD Project

Listed in alphabetical order, the following persons contributed to the ATD Project:

Lynda L. Burns, Software Productivity Solutions

Deborah A. Cerino Rome Laboratory of the U.S. Air Force Materiel Command

Karen A. Dyson, Software Productivity Solutions, Inc.

Jeffrey A. Heimberger, Software Productivity Solutions, Inc.

Beth Layman, Lockheed Martin Corporation

Holly G. Mills, Software Productivity Solutions, Inc.

Annette Myjak, Software Productivity Solutions, Inc.

Sharon L. Rohde, Software Productivity Solutions, Inc.

Tom Strelich, GRC International

Steven Wee, Software Productivity Solutions, Inc.

VI1

Executive Summary

Reuse certification is a technology that shows great promise in providing the assurance
of quality of reusable assets that is essential to achieving greater levels of reuse. The
Certification Framework developed under Rome Laboratory's Certification of Reusable
Components (CRC) effort developed the first comprehensive multi-domain approach to
developing certification processes that are effective at assuring quality. This advanced
technology demonstration effort, Certification Framework Validation for Reusable
Assets, was undertaken partly in parallel with the CRC effort to broaden the
applicability of the reuse certification technology to the commercial domain.

Certification technology is of interest to a broader audience than the reuse context
implies because it deals with the same techniques and tools that are used in mainstream
software development. Thus the results of this effort are equally applicable to those
who specialize in reuse (e.g., reuse repositories, reusers of software, or developers of
reusable assets) as well as to software developers and maintainers. Researchers
involved in developing or improving verification techniques, or in software process
improvement, will be interested in the field trials, defect model, and cost/benefit
models.

This effort has successfully demonstrated reuse certification of a C++ asset in the second
certification field trial. Both certification field trials provided numerous valuable
lessons learned through practical application of the products of the CRC and of this
effort. Perhaps the most valuable lesson learned was that the four certification
techniques (compilation, automated static analysis, code inspection, and testing) were
much more effective in combination than any one technique by itself because they tended
to find different types of defects.

As a result of this effort, many useful work products are now available for technology
transfer. These work products include the following:

• Ada and C++ Code Inspection Checklists

• Guidelines for Building in Portability and Correctness

• Portability and Correctness Indicators (metrics)

• Field Trials Lessons Learned

• CRC Web Pages & Interactive Demonstration

These work products have advanced the state of the art of reuse and certification
technologies.

1/2

1.0 Introduction

The U. S. Air Force Rome Laboratory (RL) reuse certification initiative was an
outgrowth of RL's rich 20-year legacy of research into software reliability and quality
software. The foundation of the reuse certification initiative is the RL-sponsored studies
that developed a Certification Framework for reusable software components.

This effort, an Advanced Technology Demonstration (ATD) called Certification
Framework Validation for Reusable Assets, was a continuation and augmentation of the
work performed by Software Productivity Solutions, Inc. (SPS) for RL in the reuse
certification area. The work is related to two contracts:

• Certification of Reusable Software Components (CRC), Contract No. F30602-94-
0024.

• Reuse-Based Software Quality Framework for Certification (RC-SQF), Contract
No. F30602-92-C-0158.

The objective of the CRC Program was to develop a practical, cost-effective approach
for certification of reusable components in order to stimulate software reuse throughout
industry and encourage the emergence of a commercial components market. A prime
development objective for the Certification Framework is that it include only the
practical, usable, and cost-effective subset of reliability techniques that improve
confidence in reusable software.

The RC-SQF contract developed a fully automated software metrics tool for evaluation
of the quality of reusable Ada software components. The RC-SQF breaks down the
quality scores into software attributes called criteria. Low scores for a particular
criterion indicate the need for further certification activities. The certification guidance
portion of the RC-SQF Final Technical Report assists the certifier by translating low
criteria scores into needed certification activities such as specific types of testing. The
RC-SQF quality evaluation framework is a subset of the Rome Laboratory Software
Quality Framework (RLSQF) tailored for automatability from Ada code.

1.1 Objectives and Tasks

This effort had two main objectives. The first main objective was to upgrade and
expand the application of the RL Software Quality Framework (SQF). Under this effort,
we identified needed framework upgrades, developed a re-engineering approach, and
extracted useful techniques from the SQF applicable to certification. The second main
objective was to further develop, apply and validate the RL Certification Framework
(CF) initially developed under the CRC contract. Under this effort, we expanded the RL
Certification Framework to apply to multiple domains and to an additional pilot site
which is a commercial reuse organization.

The following set of tasks are aimed at the first objective described above. These tasks
and their results are described in following sections as noted beside the task. The first
group of tasks in section 2 deal with SQF upgrades and modifications. The second set
of tasks in Section 3 deal with extracting valuable techniques from the SQF to apply to
reuse certification.

Task Section

SQF Recommended Modifications 2.3

SQF Re-engineering Approach 2.4

Re-engineered SQF Results 2.5

Re-engineered Tailoring Approach 2.5.4

Re-engineered SQF Example: Portability 2.5.5

Support of PSM PE Working Group 2.6

Analysis of SQF for Certification 3.1

Code Inspection Checklists 3.2

Ada Style Guideline Checks 3.3

Guidance for Building in Correctness 3.4

Predictive Model 3.5

The following set of tasks are aimed at the second objective described above. These
tasks and their results are described in following sections as noted beside the task.

Task Section

Field Trial with C++ Code Asset 4.1.1

Support Pilot Sites 4.1.2

Develop Commercial Standards - RIG 4.2.1

Survey of Commercial Organizations 4.2.2

CRC Web Pages 4.3

1.2 Summary of Accomplishments

Numerous work products resulted from this effort, illustrated in Figure 1-1. All of these
work products are documented in this FTR:

• Re-engineered SQF Design incorporating the quality blueprint concept

• Portability Guidelines and Indicators

• Correctness Guidelines and Indicators

• Ada Code Inspection Checklist

• C++ Code Inspection Checklist

• Reuse in Commercial Organizations Survey Results

• Second Certification Field Trial Process & Results

• Automated Ada Style Guideline Checks in AdaQuest static analysis tool

• Analysis of BLSM-I defect data

• State-of-the-Art Report on Reuse Library

• CRC Web Pages and Demonstration

The ATD Project supported the development of the IEEE standard 1420.1a Asset
Certification Framework, and can be ordered from that organization.

Work Products of Certification Framework Validation for
Reusable Assets

Re-Engineered SQF AdaQuest 2.2 Auditor

Correctness
Indicators Portability

Indicators

CRC Web Pages

|-p-„:_^- —z—^

.!pi^=s!
! —- —- |
1 i g=£BHS~ !

li;«»..

Reuse Certification
Code Inspection

Checklist for C++

Analysis of BLSM I
Problem Reports

li»
Reuse Certification

Code Inspection
Checklist for Ada

■fiiriilWiWs

Figure 1-1. Work Products Resulting from this Effort

5/6

2.0 Software Quality Framework Upgrade

This section documents the results of the set of tasks that deal with upgrades to the RL
Software Quality Framework (SQF). This section begins with a short overview of the
previous work on RC-SQF effort as a lead in to this effort in section 2.1. Next, in section
2.2, is an overview of the RL SQF to provide background information for the
subsequent sections. Included in this section are newly developed graphical
representations of the framework structure as well as analysis of the framework's
strengths.

Section 2.3 provides the results of analysis of recommended modifications to the SQF
which led to the re-engineering concept discussed in section 2.4. Not all of the
recommended modifications were implemented as part of this effort. Instead, a portion
of the framework was re-engineered to provide an example. The selected portion is a
top-to-bottom thread through the framework for the factor of Portability, and the
results are documented in section 2.5.

The SQF re-engineering work was influenced by participation in the Joint Logistics
Commanders Practical Software Measurement (PSM) working group for software
product engineering. The group is in the process of creating a measurement framework
of which software quality is a major part. Our participation is documented in section
2.6.

2.1 Evolution of the RC-SQF

The RC-SQF effort was the initial attempt to derive techniques useful for reuse
certification from the RL Software Quality Framework. The RC-SQF contract developed
a fully automated software metrics tool for evaluation of the quality of reusable Ada
software components. The reuse certifier can use this tool to identify weaknesses of a
component by examining the quality scores. The RC-SQF breaks down the quality
scores into software attributes called criteria. Low scores for a particular criterion
indicate the need for further certification activities. The certification guidance portion
of the RC-SQF Final Technical Report [SPS94F] assists the certifier by translating low
criteria scores into needed certification activities such as specific types of testing.

The RC-SQF quality evaluation framework is a subset of the Rome Laboratory Software
Quality Framework (SQF) tailored for automatability from Ada code. The system is an
integration of RL's Quality Evaluation System (QUES) tool and General Research
Corporation's commercial tool, AdaQuest™. AdaQuest is the first commercial tool to
interface with RL's QUES. AdaQuest collects the software metrics from Ada code, and
QUES computes and reports on the quality scores.

Over the course of this effort, in conjunction with the development of a certification
process for code assets on the CRC contract, this RC-SQF evolved into a part of the
certification toolset. The AdaQuest tool, with added capabilities to check for violations

of Ada style guidelines (as described in section 3.3), is used in the Static Analysis step of
the certification process.

2.2 Software Quality Framework (SQF) Overview

This section contains an overview of the RL SQF, to provide background information as
a basis for understanding the modifications to the SQF proposed in this report. The
SQF was developed by RL to identify key software quality issues and to provide a valid
methodology for specifying software quality requirements and for measuring achieved
quality levels of software products released incrementally during the software life cycle.

The SQF is the culmination of research beginning in 1976, and the framework continues
to evolve to keep pace with the state of the art of software engineering and the ever-
increasing demands of the DoD customers. The trend has been for the framework to
grow to encompass more quality concerns and measures.

The SQF is intended to satisfy three needs relative to software quality:

• to thoroughly specify the level of quality required

• to predict the quality of the end product early in the software development life
cycle

• to measure the achieved quality levels.

The SQF is a collection of techniques used throughout the software development life
cycle. It is mainly a series of product inspections, as illustrated in Figure 2-1, but also
includes techniques of traceability analysis, target computer resource utilization (CRU)
measurement, problem report tracking, and complexity metrics.

Software Quality Framework

System
Requirements

i Inspection

Software
Requirements

Inspection
Xt

Standards
Inspection

Preliminary
Design

Inspection

Detailed
Design

Inspection

Design
Complexity

Metrics

Miscellaneous
Documentation

Inspection

Test Plans
Inspection ?

^L_

Code
Review

^1_

Traceability
Analysis

Code
i Complexity

Metrics

Problem
Reports'""

.„.Meines

CSC Test
Results

Evaluation

CSC I Test
Results

Evaluation

System Test
Results

Evaluation

Target CRU
Metrics

'. Operational
; Test &
j Evaluation
^q

Figure 2-1. SQF is a Collection of Techniques,

The foundation of the SQF is the software quality model, shown in Figure 2-2, that
establishes a hierarchical relationship between a user-oriented quality factor at the top
level and software-oriented attributes at the second and third levels (criteria and
metrics, respectively). Software quality is measured and predicted by the presence,
absence, or degree of identifiable software characteristics.

Factor

Criterion Criterion Criterion

Metric Metric

r

Metric

Figure 2-2. The SQF Quality Model Hierarchy.

The hierarchical quality model is perhaps the most well-known and accepted aspect of
the SQF. At the top level of the quality model, the 13 quality factors define a quality
vocabulary that allow one to be specific when identifying quality concerns. The
hierarchical nature of the model partitions quality concerns into convenient packages
that can be tailored to suit the needs of each program. Prioritizing and ranking concerns
by these SQF factors focuses attention on the issues of importance and helps in making
trade-offs.

Figure 2-3 illustrates the relationship between the 13 quality factors, and the 29 criteria
found in the latest version of the framework [SQF95]. As this diagram reveals, the
factor/criterion relationships are somewhat complex. Not all quality factors are
independent. Only three, Usability, Efficiency, and Integrity are completely
independent of other factors. Many factors are closely related and rely on common
criteria such as Modularity, Simplicity, Self-Descriptiveness, Generality, and
Independence.

1» 1 1 AP 1 1 ST |

1 - | 1 - |

OP TN

nn nn ^^^^^^H

Accuracy
Anomaly Management
Application Independence
Augmentability
Autonomy
Commonality
Completeness
Consistency
Distributern ess
Document Accessibility
E itm-n vii mi's s ■ C om m u n ic a ti c
El!(«-iivir'nrs';-Processing
EHuf IWHIIMIS- Storage
F j'lc^onrtl Overlap
F'.i'ic!:>nril Scope

GE Generality
ID Independence
MO Modularity
OP Operabilily
RE Recontigurability
SD Self- Des criptiveness
SI Simplicity
SS S ystem A ccess rbi I ity
ST System Clarity
SY System Compatibility
TC Traceabitity
TN Training
VR Virtuality
VS Visibility

r
T

_egend

Criterion

CD Criterion
more th

toll;

shared by

K 1 includes (2

z
Figure 2-3. The SQF Factor/Criteria Model.

2.2.1 Structure of the SQF

In addition to the hierarchical quality model, the SQF is also subdivided into data
collection forms for each of nine phases of the software life cycle shown in the table
below. Quality is evaluated separately in each phase, thus the framework is actually
composed of 9 independent mini-frameworks.

All phases use the same factor/criteria model, but what differs is the lesser or greater
extent of coverage of the factors and criteria in each phase. For example, in phases D, E,
F, and I, not all 13 factors are available to measure. Phase B has the most complete
coverage and phases F and I have the sparsest coverage of criteria and metrics.

Table 2-1. The RLSQF Data Collection Forms.

Data Collection Form Life Cycle Phase

A System Requirements Analysis/Design

B Software Requirements Analysis

C Preliminary Design

D Detailed Design

E Coding and CSU Testing

F CSC Integration and Test

G CSCI Testing

H System Testing

I Operational Test and Evaluation

It is difficult to draw a diagram of the SQF structure in its entirety. If we attempt to
show the factors, criteria, and metrics for all phases in a single diagram, we get
"spaghetti" (see Figure 2-4). This difficulty is an indicator of the size and complexity of
the framework.

Phase X

W ♦♦ ♦♦♦♦♦♦♦♦♦♦ ♦ ♦ ♦♦♦♦

Figure 2-4. Attempting to Diagram the SQF Structure.

Instead, we show the criteria and metrics with the next level of detail, the metric
elements, which are the measures that make up metrics. The diagram in Figure 2-5 is
simpler because metrics belong to a single criterion. In fact, the metric identifier is
simply the criterion abbreviation with a numerical suffix. This type of diagram is useful
for comparing the number of metric elements among the criteria and metrics, and for
illustrating automation of the metric elements.

11

AC

AC.1

AM

AM.3

AM.2 AM.6

AM.7

AP

AM.1 AM.4 H AP.1
c T: 4r^—

I AM.5 [AP.2

 71 T
| AP.3

AP.4

AT

AT.1

AT.2

All

~j AU.1

CL

CL.1

CL.2

CP

CP.1

CS

CS.1

CS.2

-j DI.1

DO

DO.1

DO.2

EP]

-TEPX

EP.2

ES

ES.1

FS

FS.1

GE

GE.1

GE.2

SI

H SI.1 SI.4

[Z

SL31 t

SI.5
■"

SI.6

ST

ST.2

ST.3

[W

ID.1

ID.2

ST.1 ST.4

ST.5

MO

MO.1

MO.2

OP

OP.1

SD

SD.2

SD.1 SD.3

VS

RLSQF DCF E: Coding & CSU
Test Phase

Legend
VS.1

VS.3

Criterion

J Metric I

Metric Element

_J

Figure 2-5. Metric Elements for a Single Phase of the SQF.

2.2.2 Metric Elements

Metric elements are either Yes/No (Boolean) questions, or are ratios of numerical
questions designed to evaluate to a value between zero and one. Questions are
organized into Data Collection Forms (DCFs), one for each phase of the software
development life cycle. Figure 2-6 contains an excerpt from the Phase C (Preliminary
Design) DCF. Each question has a unique identifier that includes the two-letter
criterion abbreviation, the metric number, the question number, and the phase suffix.
Each question is associated with one level of the static structure hierarchy (System,
CSCI, CSC, or CSU). As Figure 2-6 shows, different criteria and static structure levels
are combined within a DCF.

12

Every question may have an answer (which is Yes or No, or a value depending on the
type of question), or it could be Not Applicable (NA). When computing quality scores,
NA answers do not affect the score either positively or negatively. If any question in a
metric element ratio is NA, the entire metric element is NA.

Metric elements are computed in the metric scoring equations. Table 2-2 below shows
the metric scoring equations for the questions shown in Figure 2-6. Each metric element
is enclosed in a weight function, designated by "1.0()". By default, each metric element
is equally weighted, thus the weight is "1.0". The SQF scoring methodology allows
users to adjust weights.

The "W.AVG()" function computes the weighted average of the operand for all
subordinate (i.e., child) units. The equation for MO.2, for example, shows that the CSCI
score is augmented by the weighted average of the MO.2 score of all of its subordinate

CSCs.

Table 2-2. Metric Scoring Equations for the Questions in Figure 2-6.

Metric

ID.2

MO.l

MO.2

OP.l

Level

CSCI

CSCI

CSC

CSCI

CSC

Scoring Equation

ID.2.1.C

W.AVG(MO.l)

1.0(MO.L2.C) + 1.0(M0.1.3.C)

1.0(1.0 - (MO.Z3.cl + MO.Z3.c2 + M0.2.3.c3) / M0.2.2.C) + 1.0(1.0 - (
M0.2.3.c4 + M0.2.3.C5) / (2 * M0.2.2.C)) + 1.0(MO,2.3.c6 / M0.2.2.C)
+ 1.0(W.AVG(MO.2))

CSCI

MO.Z5.C

1.0(OP.l.lx) + 1.0(OP.1.2.C) + ...

13

ID.2.1.C (CSCI)

Are the same version and dialect of the implementation language(s)
supported on other machines? (Guaranteed "Y" for Ada if validated
Ada compiler is used.)

Y/N/NA

M0.1.2.C (CSC)

Is the CSC developed according to structured design techniques? Y/N/NA

M0.1.3.C (CSC)

Does the CSC have a single processing objective (i.e., all the
processes within the CSC are related to the same objective)?

Y/N/NA

M0.2.2.C (CSCI)

How many interfaces among CSCs in this CSCI? ■ _/NA

M0.2.3.cl (CSCI)

How many CSC interfaces include content coupling? _/NA

M0.2.3.c2 (CSCI)

How many CSC interfaces include common coupling? _/NA

MO.2-3.c3 (CSCI)

How many CSC interfaces include external coupling? _/NA

M0.2.3.c4 (CSCI)

How many CSC interfaces include control coupling? _/NA

M0.2.3.c5 (CSCI)

How many CSC interfaces include stamp coupling? _/NA

M0.2.3.c6 (CSCI)

How many CSC interfaces include data coupling? _/NA

M0.2.5.C (CSC)

What is the cohesion value of the CSC? (Functional = 1.0,
Informational = 0.7, Communicational = 0.5, Procedural = 0.3,
Classical = 0.1, Logical = 0.1, Coincidental = 0.0)

_/NA

OP.1.1.C (CSCI)

Does the design implement the specified operating characteristics of
the CSCI (i.e., the normal and alternate procedures and actions
performed by the CSCI)?

Y/N/NA

OP.1.2.C (CSCI)

Are all the error conditions reported to the operator/user as
specified in the requirements?

Y/N/NA

Figure 2-6. Excerpt from Phase C (Preliminary Design) Data Collection Form.

2.2.3 Important SQF Concepts

The following paragraphs summarize important concepts embodied in the SQF
approach.

14

• Many facets of quality. The SQF view of quality is many-faceted, thus the 13
quality factors, which each represent different aspects of quality. Similarly, the
CRC approach to reuse certification has identified three aspects of quality that are
of universal concern: Correctness, Understandability, and Completeness.
Specific reuse applications may have additional concerns such as Portability,
Efficiency, Safety, etc.

• Importance of a user/customer-oriented point of view. SQF factors reflect the
user's or customer's view of quality.

• Ranking factors is valuable. Customers can rank the factors to indicate the
relative importance of the aspects of quality. This ranking serves as guidance
when the inevitable trade-offs between quality and resources must be made.

• Translation of abstractions. The framework translates somewhat abstract or
intangible user-oriented "factors" into concrete software characteristics that
software engineers can relate to.

• Full life cycle approach. SQF is a full life cycle approach. The framework
contains a quality model to predict the quality of the end product from early life
cycle artifacts.

• Product inspection methodology. SQF is a collection of techniques (see Figure 2-
1), but is basically a set of product inspections.

• Blueprint for quality. The framework can be viewed as a set of guidelines or
principles to design quality into the product—a "blueprint for quality".

2.3 Recommended Modifications to SQF

The objective of this task was to identify modifications to the SQF in order to improve
its usability and applicability. Sources of recommendations include interviews with
experts knowledgeable in the SQF, interviews and informal discussions with SQF users
in the RL SQT2 Consortium (described below), documented recommendations gathered
on the Quality Evaluation System (QUES) contract F30602-88-C-0019 as well as
analysis by software measurement experts on SPS' staff. Sections 2.3.1 through 2.3.7
describe the recommended modifications.

Overview of the RL Software Quality Technology Transfer (SQT2) Consortium

The Consortium, sponsored by RL, was launched in August 1991, and its primary
objective was to transfer RL's software quality technology to industry. Participating
organizations entered into Cooperative Research and Development Agreements
(CRADAs) with RL. RL provided training in the technology, tools (including Quality
Evaluation System (QUES)), and consulting and data analysis services. Members
conducted pilot application projects, applying the SQF methodology to in-house
software development programs. Members provided their data to RL so that RL could
perform multi-project evaluation of the SQF. Members also reported to RL on the costs
and benefits of the technology.

15

Members included Northrop Grumman Melbourne, Hughes Aircraft of Canada, CTA
SoHaR, Frontier, and Kaman Sciences. Members agreed to collect SQF data for the
factors Reliability and Maintainability so that there would be common data across all
pilot application projects. The long-term goal was to validate the SQF scoring approach
by comparing the SQF scores to independent measures of Reliability and
Maintainability. RL retained the project data in a Consortium repository. Four
participating organizations submitted data to RL, and two have ongoing projects.

Evolution of the SQF
There is a continuous need to keep the SQF framework up to date with the state of the
art in software engineering. The most recent formal review of the framework (prior to
this effort) occurred in the late 1980's, as part of the Quality Evaluation System contract.
The results of this review were documented in [SAI89]. The varied sources of
recommendations included analysis of related research and development efforts,
surveys, and working group meetings. Approved recommendations were incorporated
in the 1991 version of the SQF [DYS91A] that was implemented in the Quality
Evaluation System (QUES) tool, but many were tabled pending future research and
analysis. Recommendations for change in this technical report are equally applicable to
the 1991 SQF baseline, as well as to the most recent Version 1.5 [SQF95].

The detailed nature of the questions in the SQF data collection forms necessitates
inherent assumptions about standards, methods, and implementation languages.
Because these characteristics are subject to change, it is important to document what
these assumptions are to make it easier to maintain the framework. In 1989, for
example, the recommendations from many sources were to incorporate the DoD-STD-
2167A standard nomenclature, and this was accomplished in the 1991 version. Now the
recommendations are to remove the 2167A dependencies!

Categorization of Changes
The recommended changes to SQF can be categorized as one of the following:

• structure and/or content

• methodology of application

• conformance to standards

• scoring

• automation

• training/packaging

• management of the framework.

Each of the above types of changes is discussed in the following subsections.

2.3.1 Structural and Content Changes

Most of the recommended modifications fall into the category of structural and content
changes because this is the broadest category. When discussing changes to the SQF

16

structure, it is important to realize that there are three dimensions to the organizational
structure: the factor/criterion/metric hierarchy, the architecture (static structure)
hierarchy, and the data collection form breakdown.

The nature of the recommendations in this category range from high level concerns
such as the makeup of the factors and reorganization of the data collection forms, to
details such as the wording of specific questions.

Although there were no recommendations to alter the basic factor, criterion, and metric
hierarchy and nomenclature, there were proposed changes such as the following:

• Add or delete factors

• Delete criteria or reallocate criteria among factors

• Add new metrics or metric elements

The argument for deleting certain factors (such as Efficiency, Integrity, Expandability,
and Interoperability) is that they should be specified concretely as functional,
performance, or interface requirements, rather than as quality factors. While quality
factors alone may not be adequate from an acquisition point of view, this argument
neglects the need for predictive indicators for these factors early in the life cycle before
the specified requirements can be adequately tested.

New factors have been proposed, such as Trustworthiness and Safety, to expand the
coverage of the framework.

Need for Tailoring Support
Tailoring by subsetting is a technique that allows users to cut the framework down to
size to reduce the cost of data collection. Users might like to evaluate all 13 quality
factors, but typically cannot afford the necessary data collection. Therefore, users select
the factors that are most important to their application and tailor the data collection to
just those factors.

Another aspect of tailoring is to be able to prune away the portions of the framework
that are not applicable, for example, because of the nature of the system's requirements,
the methodology, or the implementation language. This type of pruning is not easy to
do because the threads run all throughout the framework and are difficult to trace.
Questions must be evaluated one by one, and this is time consuming. The tailoring
process could be made simpler and more efficient by redesigning the framework for
tailoring.

Removing Ambiguity

Consortium (and other) users have complained that many questions are either
subjective, or are not stated unequivocally. Too much effort is needed to interpret these
questions. Sometimes the operative word in the question is unknown, or could have
multiple interpretations. For example, the Completeness question:

CP.1.2.e How many data items are identified?

17

To answer this question, we need to know what constitutes "identification." One
interpretation is that CP.1.2.e is really asking for the total number of data items
referenced in the unit. The word "identified" in this case simply means that a reference
is made to a data item in the unit, not that the data item is declared within the unit.
Therefore we can count data items that are declared outside the unit. On the other
hand, identification could mean that documentation about the data item exists, such as
descriptive comments. It is impossible, however, to confidently interpret this question
without knowing how it will be used in the metric element equation, and being able to
interpret the other related questions that constitute its metric element.

In some cases, we can simply restate the question or define certain terms in a glossary to
remove ambiguity. Frequently, interpretation is improved by making the definitions
implementation language-dependent. The 1991 SQF addressed some of these needs by
adding Ada-specific examples, such as:

AM.4.1.e Is recovery made (e.g., exception handlers or
other means) from all detected hardware faults (e.g.,
arithmetic faults, hardware failure, clock interrupt)?

ST.2.1.e How many unique execution paths are in the CSU,
including those caused by a RAISE statement?

There is a conflict between the desire to make the framework methodology- and
language-independent, and the need to have the questions be specific enough to be
answered consistently and potentially to be automated. One possible approach is to
state the underlying principle or guideline in as language-independent a fashion as
possible, and then to provide language-specific examples. More details about this
"guidelines" approach are provided in Section 2.4.

2.3.2 Methodology of Application

Methodology related recommendations deal with how the framework is used within a
software development project. This encompasses many aspects such as sources of data,
how often data is collected, reported, and analyzed, and how to handle non-
compliance, and how to tailor the framework. One difficulty that users have
experienced is in adapting the framework to their unique software development
process and to their organization.

There is currently a lack of guidance about how to make use of the information that the
SQF provides. One also has to be wary of facile conclusions when interpreting answers
to the SQF questions. When a problem is uncovered, the appropriate corrective action
may not be to simply convert a No into a Yes. In many cases the metrics are most
appropriately used as indicators rather than absolute measures. If Accuracy is a
concern, for example, the framework highlights the need for an error budget, early in
the life cycle, that allocates errors among the various components of the system. If there
is no such error budget, then that is a severe impact to Accuracy, and the appropriate
action is to generate the error budget. But the lack of the error budget is probably
indicative of a general lack of adequate error analysis that may have far-reaching
implications in the design of the system. In the case of Simplicity measures, for

18

example, the framework may indicate that a unit has above average complexity. The
appropriate action in response to this finding is probably not to send the unit back for
rework, but instead to target it for additional scrutiny such as a code walkthrough, or
more comprehensive test coverage.

2.3.3 Conformance to Standards

The purpose of these recommendations are to bring the framework up to date with
current standards and practices.

• Remove DoD-STD-2167A dependencies

• Incorporate MIL-STD-498 or relevant IEEE or ISO standards

• Incorporate commonly approved practices and de facto standards such as the SPC
Ada Quality and Style Guidelines.

One possible approach to removing 2167A dependencies is to reorganize the DCFs by
product and/or activity, rather than by the 2167A life cycle phases. Each question
would then be associated with a specific product or activity.

2.3.4 Scoring

Many of the suggestions evaluated by the QUES contract working group were tabled
with recommendations for further study, and modifications to scoring is one such
suggestion. Because the scoring equations are still theoretical, there is a need for
empirical evidence that the computed quality factor scores are correlated to the quality
of the final product. It does not make sense to alter the scoring methods (such as
considering alternative factor/criteria models, relative weighting schemes, or
modifying metric elements) based on what amounts to intuition and conjecture.

The RL SQT2 Consortium is an effort to provide needed empirical data, but efforts are
hampered by the scope of the framework. The Consortium was forced to limit itself to
consideration of just 2 of the 13 quality factors, Reliability and Maintainability. Another
framework characteristic that constrains empirical validation is the amount of time that
is required to amass the data; some correlating measures may not be available until
after deployment of the system.

Aspects of scoring that have an impact on the usability of the framework are promising
areas for improvement despite the lack of validation. The way that the quality
evaluation information is presented is an important consideration, and we have seen the
need for both high-level summarization of quality suitable for the customer or program
manager, as well as low-level detailed results for the developers. System- or CSCI-level
factor scores might be something to present at major reviews, but they are not
necessarily helpful in identifying a problem at a level of detail where it can be fixed.
When using the framework as an inspection checklist, for example, the pertinent
information may be the units that are found to be non-compliant.

Complementary relationships between factors are adequately modeled by the factors
having criteria in common. One aspect that the scoring in the current framework does
not support, however, is the concept of inverse relationships among factors. For example,
there may be a trade-off between Maintainability and Efficiency. The inverse
relationships among factors are discussed in [BOW85] but are not supported by the
scoring of the framework. One suggestion is to use the same metric elements for both
factors, scoring positively for one and negatively for the other.

2.3.5 Automation

The cost of application of the SQF methodology is a major impediment to its acceptance.
The most expensive aspect is data collection because most questions must be answered
by a knowledgeable person. Automation of data collection is seen as the best solution
for reducing the cost to apply, and users are constantly clamoring for more automation.
When limited in resources to apply the SQF, users have a tendency to apply just the
automated portion of the framework (exemplified by the RC-SQF framework).

Consortium users have requested expanding automation to cover more of the
framework, providing automated tools for implementation languages (in addition to
Ada) such as C and C++, and improving the automation for FORTRAN.

2.3.6 Training and Packaging

One of the hurdles that new users of the SQF methodology must overcome is
understanding how to use it, and how to apply it in particular to their unique situation.
The size and complexity of the framework makes this initial task daunting, and many
potential users are overwhelmed before ever getting to the application stage.

The need for improved training in the methodology has been identified, as well as the
need for "packaging" the technology to simplify it and to increase its acceptance.
However, no specific recommendations have yet been received to identify solutions for
these needs.

2.3.7 Management of the Framework

Management-related recommendations are concerned with the custody of,
dissemination of, and future directions of the framework. One suggestion is to apply
configuration management to the framework, via a Configuration Control Board (CCB)
to establish baselines and to control changes.

Traceability
Making each question in the framework traceable to a standard or reference would have
several advantages:

• reduce interpretation difficulties by providing a backup source for more
information

• remove objections based on the argument that the framework is not "validated"

20

• simplify future updates as standards or practices change

The reference tag idea is illustrated in the section on the Guidelines Approach which
follows.

2.4 SQF Re-engineering: The Guidelines Approach

The underlying guidelines that are the SQF blueprint for building quality into software
can be extracted by examining the questions in the DCFs and "reverse-engineering" the
framework. The approach embodied in the SQF is that the guidelines should appear as
explicit requirements, and the requirements should be traced down through design,
code, and testing. Inspections should be made at each stage of the life cycle to ensure
that the requirements are being implemented, and finally the requirements should be
explicitly tested at the system level.

The guidelines can be thought of as forming underlying foundation of the framework, a
structure upon which both inspections and product measurement are built. Each
guideline would be associated with one or more products or activities, and would have
a reference. The guideline would be stated as a statement rather than a question, and
ideally in a methodology- and language-independent manner. Each metric element
might have dependencies, such as implementation language or development
methodology, which should be explicitly documented. Explicit dependency
identification is very helpful when tailoring the framework.

2.4.1 Motivation for Reengineering and Repackaging the SQF

In attempting to develop a broader and higher-level perspective for both the
certification effort and the SQF, we have concluded that both fall into the category of
quality assessment for product engineering. We believe that both certification and SQF
can make significant contributions to the effort sponsored by the Joint Logistics
Commanders to develop "Practical Quality Measurement" guidance for product
engineering (Our participation in the technical working group for this effort is
discussed in Section 2.6) However, in order to participate in a working group of this
type, we must be able to communicate the value of SQF. The key concepts described in
subsection 2.2.3 are the core ideas embodied in the SQF approach that we have already
extracted by our analysis to date. In addition, we feel there is a need to repackage the
SQF to accomplish the following:

• elucidate the underlying software engineering guidelines, or principles, from
which the data collection forms derive

• separate out the various techniques, such as distinguishing traceability analysis
and problem report metrics from the inspection checklists

• describe lessons learned about the predictive model

These concepts are illustrated in Figure 2-7.

21

Product/Activity

^L

Guideline Reference
Standard
Handbook
Textbook

Figure 2-7. Linked to Product/Activity and Reference

Figure 2-8 illustrates an example of guidelines derived from questions for the Accuracy
criterion. The arrow pointing from the reference block of the lower guideline to the
upper guideline indicates linkage resulting from the flow down from one guideline to
another in later phases of the development life cycle. This linkage is also useful for
tailoring. If for example, the higher-level guidelines are tailored out, the lower-level, or
derived, guidelines can be easily identified for tailoring by the linkage relationship.

Requirements

Detailed Design
Code

Guideline: Error
tolerances (e.g., ranges,
legal combinations) should
be specified for all
xternal inputs.
^

Reference

Guideline: External inputs
should be checked for
illegal values, illegal
combinations or conflicting

*TTequests before use.

Inspection Item

Are all external inputs
checked for illegal
combinations or
conflicting requests?

Reference

Inspection Item

Are all external inputs
declared as types with
range constraints?

Ada

Figure 2-8. Example Guidelines for the Accuracy Criterion.

2.4.2 Guidelines Examples

Examples of guidelines extracted from the SQF are provided for three criteria,
Accuracy, Simplicity, and Generality. This reverse-engineering approach could be used
to turn the SQF into a handbook.

22

Accuracy deals with those characteristics of software which provide the required
precision in calculations and output. There are 25 questions for the criterion
Accuracy in the 1991 version of the SQF, and they are distributed over all 9 phases.
They can be summarized by the following guidelines.

Accuracy Guidelines

An error analysis should be performed prior to allocating requirements to CSCIs. Accuracy
requirements should be budgeted to individual capabilities. There should be quantitative
accuracy requirements for all inputs, outputs, and constants associated with mission critical
capabilities. Accuracy requirements should be checked for traceability down to the CSU level.
At all levels of testing (unit, CSC, CSCI, and system) outputs should be checked to ensure that
they meet the accuracy requirements. Reused code such as math libraries should be evaluated to
ensure that it provides adequate precision.

Simplicity embodies those characteristics of software which provide for definition and
implementation of functions in the most uncomplicated and understandable manner.
Simplicity guidelines are more detailed, and are less succinctly summarized than
Accuracy guidelines, especially at the detailed design and coding stages. There are 85
questions in all for the criterion Simplicity.

Simplicity Guidelines

Capabilities should be identified in a structured fashion using diagrams. There should be a
requirement for a programming standard, and a programming standard should be established as
early as the system requirements analysis phase. There should be a requirement to use a
structured language (such as Ada) or a preprocessor. Code should be checked to see that it
follows the programming standard.

The design should reflect a structured approach. Descriptions should identify all interfacing
units and hardware. The use of common blocks should be minimized. Repeated or redundant
code should be avoided by using language features such as procedures, etc.

Each unit should perform a single, non-divisible capability, and be self-contained (i.e.,
independent of the source of input and destination of output, and of knowledge of prior
processing). Its description should include input, output, processing, and limitations. The flow
should be simple from top to bottom, with one entrance and one exit, minimal branching, no
nesting of levels or unnatural loop exits. Negative and compound Boolean expressions should be
avoided. The unit should be free of self-modification of code.

Each unit should reference a minimal amount of data items and each data item should have a
single use. Use of global data items should be avoided. The number of input data items should
be minimized and output should be done via parameters. The number of unique operands
should be minimized.

Generality deals with those characteristics of software which provide breadth to the
functions performed with respect to the application. Generality guidelines can be
summarized from the 32 questions found throughout the framework. Note that the
guideline not to range-check inputs is in direct opposition to the Accuracy guidelines.

23

Generality Guidelines

The system should be free from machine-dependent operations. Components (e.g. CSUs) should
be designed to perform single processing capabilities. There should be no strict limits on the
volume of data handled by the system. The range of input data values should be flexible (i.e.,
there should not be hard-coded error tolerances or range tests.)

CSUs should be designed to be called by more than one other CSU, and should contain a mixture
of external input, external output, and algorithmic processing.

2.4.3 Guidelines and Configuration Management

Two of the challenges of management of the framework are to determine what is there,
and to evaluate the desirability of proposed changes. Evaluators may find it easier to
understand and interpret the framework in the form of statements, rather than as a
collection of questions.

When examining the guidelines, we often find that we do not necessarily agree with all
of them. For example, the Anomaly Management question,

AM.1.5.e When an error condition is detected, is its
resolution determined by the calling CSU?

when turned into a statement leads to the following guideline:

Guideline: All error conditions should be resolved by the calling CSU.

This approach may not be desirable for all designs. For example, if a well-defined part
of the architecture is responsible for handling user error messages so that all messages
appear the same to the user and are consistently handled, then this would violate the
guideline. In Ada, for example, units might handle different types of errors in different
ways. A unit might immediately resolve a low-level predefined exception such as
"Constraint_Error" and /or convert it into a meaningful application-defined exception
and propagate it to the calling body. It might detect an incorrect request, or
incompatible inputs, by raising its own exception. A data entry unit might deal with an
incorrect keystroke by simply BEEPüng and ignoring it.

If we examine the Phase C version of this question, we are inclined to derive a slightly
less stringent guideline.

AM.1.5.C Is there a standard for handling recognized
errors such that all error conditions are reported (via
raising, propagating exceptions, or passing a value) to the
calling body (e.g., subprogram, task or package)?

Guideline: There should be a standard for handling recognized errors such that all error
conditions are resolved immediately or are reported to the calling unit for resolution.

Recording references and dependencies for each guideline will also be helpful for
framework management. When a standard changes or is made obsolete, the related

24

guidelines will be easily isolated for updating. The fact that a reference exists at all is an
indicator of the acceptability of the guideline. Dependency information may be used to
derive different versions of the framework, such as an Ada version, or an object-
oriented version.

2.4.4 Analysis of Software Development Life Cycles

In order to develop an approach for redesigning the SQF to improve its tailorability to
non-Waterfall development life cycle processes, we first analyzed common
development life cycle models in use today. This section begins with an overview of
the common models and concludes with the results of our comparative analysis.

2.4.4.1 The Waterfall Model

The Waterfall model officially appeared around 1970 [ROY70], but earlier versions were
described as early as the late fifties. This model has direct ties to computer hardware
engineering. The Waterfall model depicts the software development process as a series
of ordered, sequential "phases" as shown in Figure 2-9. The input for each phase is a
documented specification from the previous phase. The focus of each phase is to
translate these input specifications into a more concrete, less abstract specification of the
system. Early phases deal with the problem space and later phases with the solution
space.

Figure 2-9. The Waterfall Model

The Waterfall model has its advantages. Software personnel can specialize in a certain
phase of development—for instance, an analyst can focus on defining requirements, a
designer on software design, a programmer on coding, and so on. Also, the process is
simple, because of the sequential nature of the work, and the interfaces between phases

25

and people are straightforward - the producer of the completed phase hands off the
project and a complete specification to the producer of the next phase. This model has a

-built-in requirement for documentation at each level which is beneficial because,
theoretically, all decisions are documented and traceable.

Experience, however, has uncovered a number of problems with the Waterfall model.
One problem is that customers are typically only involved at the front-end
(requirements analysis) and back-end (testing) of the software development process.
This lack of involvement often results in a system implemented with wrong, missing,
and extra/unnecessary requirements. (Imagine the Waterfall as an implementation of
the game "telephone" where developers have little opportunity to get clarifications on
unclear messages, resulting in extremely garbled messages coming out the "back end"
of the pipeline.) This lack of involvement also results in lack of ownership and
acceptance of the final system on the part of the customer community.

While later Waterfall variations attempt to deal with flawed specifications by building
in feedback loops to earlier phases, most allow the loop to span only one phase, leaving
no mechanism for dealing with new requirements uncovered downstream. Experience
has shown that it is often impossible to get complete requirements up front. Therefore,
when new requirements surface very late in the life cycle (i.e., testing or maintenance),
they are hard to deal with and much more costly to fix [BOE81]. Finally, one of the
most glaring problems is that the model's linear nature results in a process that takes
too long to complete; by the time the system is developed, requirements have changed
and the system is often inadequate, or worse, irrelevant.

2.4.4.2 The Incremental Development Model

The Incremental Development model, shown in Figure 2-10, is a slight variation of the
Waterfall. After the system-level specification phases have been completed, a series of
mini-projects are started. While each mini-project's process remains serial, this strategy
allows the mini-projects to proceed in parallel. This can help reduce the lengthy cycle
time problem associated with the Waterfall, but can also create more product problems
due to the large number of interfaces that now must be coordinated and controlled
between mini-projects.

26

SYSTEM ^^

FEASIBILITY^^-^"^
-^■""VALIDATION >

V S/W PLANS AND -^"'
REQUIREMENTS^^

^ VALIDATI ON V s f DETAIL DESIGN ^^^^

^^"*VERI FIC AT ION
X

%
PREUMINARY /

PRODUCT /
DESIGN /

/

/ VERIFICATION

y
^ / \

CODE X
DETAIL DESIGN ^^^^

^.^■'••'''VERIFICATION

TEST

V
^FOMENTATION ^^ X

\
^ST EM TEST

^ ^
\ DETAIL DESIGN ^^^

^*^*VER\ FICATION

EST
INJWaRATION ^^^

> VERIFICATION MUTATION ^S**'

CODE ^* ^fff^"^ QYSTEMTEST \MM

V ^t***^ UNIT TEST
IN%GRATION E^ALI DATION

^^-*
VHjßlFICATtON IMPLEMENTATION ^S*"

V
j^-"'*SYSTEM TEST

DPE^TIONSAND ^>**

VALIDATION * NTEGRATION

V VERIFICATION ^

V OPERATIONSAND ^S0**'
MAINT. ^t-***^

^t***^ REVALVATION

Figure 2-10. The Incremental Development Model

Another variation of the Incremental Development Model is to re-integrate the mini-
projects into a single project for the later phases involving testing, implementation, and
operations / maintenance.

2.4.4.3 The Spiral Model and its Variations

The Spiral model is probably the second-most-familiar model next to the Waterfall.
This model was initially proposed by Boehm in 1975, with various refinements made in
1976,1986, and 1988 [BOE88]. The characteristic shape is shown in Figure 2-11. The
concept of the spiral model is that you start from the middle of the spiral and work your
way out. Each cycle or rotation, takes the developer through the same four steps (i.e.,
shown as the four quadrants in the picture):

1) determining objectives,

2) evaluating risks/alternatives,

3) developing/verifying, and

4) planning the next cycle.

Each cycle addresses a further level of decomposition or "phase", which can be seen by
looking at the activities shown as spirals in the lower right quadrant. The process is
risk-driven, in that the details of what is actually developed or planned in the
subsequent steps is based on the risks identified during that cycle.

27

Evaluate ASernatfves
Identify, Resolve Reks

Review

Plan Next Phases

Develop, Vertfy Next-
Level Product

Figure 2-11. The Spiral Model

The risk-driven nature of the model adds flexibility and helps support whatever
approach (e.g., evolutionary, specification-driven, prototyping, etc.) is best suited to the
problem at hand. For instance, prototyping is an option in each cycle, but is not
required. (Prototypes may be written to verify the user interface, performance, or to
evaluate design alternatives). Written specifications are also optional; if an evolutionary
prototyping approach is used, the verified prototype and a written plan may serve as
the "specification" for the next cycle.

The spiral model has encountered some criticism. One complaint by users is that the
model is complex and requires more experienced staff to successfully implement. Also,
because the project plans are dynamic and many commitments are deferred until later
in the project, it is difficult to use in contract situations where the acquisition process
demands plans, costs, and a complete schedule up front.

Various approaches similar to the spiral model have been put forth. Evolutionary
Development focuses on the fact that, for many types of systems, the requirements
simply cannot all be determined up front, and the execution of the software
development process actually uncovers unknown requirements that may not be
discovered otherwise [MCC82]. With this approach, a small piece of operational
software (sometimes called an operational or evolutionary prototype) is developed,
reviewed, refined, then "added onto" in the next iteration. The Iterative Development
model [KAN95], illustrated in Figure 2-12, is another example.

28

Customer
Requirements

Domain
Analysis

♦
Requirements

Definition

Software
Architecture

^z—
Risk

Assessment

Prototype
Highest Risk

TZZ

Test Suite &
Environment
Development

Integrate
with Previous

Iterations

Release
Iteration

rrrd J T-
Figure 2-12. The Iterative Development Model

All approaches which involve iterations and prototypes require continuous customer
involvement to review the operational prototypes and refine requirements. A noted
problem with approaches involving evolutionary prototypes is that the code-and-fix
cycles can result in poor structural quality. A large number of fixes, over time, can
weaken design at the system and code /unit level. Rapid code-and-fix cycles can also
cause developers to loose sight of the big picture, causing unnecessary requirements
and design changes to insidiously creep into the system.

2.4.4.4 The RAD Approach

Rapid Application Development (RAD) appeared on the scene in the mid 80's, in
response to the need to reduce software development cycle time. While no agreed-
upon RAD model has ever been adopted in the industry (each vendor has their own),
most RAD approaches share a set of common characteristics. They emphasize
timeboxing of activities (shown in Figure 2-13), facilitated requirements workshops, the
use of prototyping and CASE tools, and strict scope control.

29

Project

Set Up

10 days Requirements

Workshops

^
k vvo

10-20 days Iterative Design

and Build

60-90 days

Timeboxing

Engineer and

Test

20-30 days
Review and

Implement

Timeboxing ■

C Planning

Phase

Develop
Iteration M

Evaluate
"-d Iteration M ■

Evaluate
Version N

Phase 4
Evaluation' |_ 1
Next Phase

Figure 2-13. Timeboxing in the RAD Approach

Proponents of this approach point to the ability to deliver systems typically in 6-9
months versus 2-3 years, and claim that these systems better meet business needs
because of the close customer involvement that RAD fosters. Critics claim that many
systems are unsuitable for RAD and that the approach actually takes much longer than
proponents claim, because scope creep is extremely difficult to control. Another
criticism is that design is often skipped or de-emphasized, leading to "brittle and
unmaintainable" systems [REI95]. While RAD may never become a recognized life
cycle model, it can be said that most of the techniques which help characterize this
approach are considered commonplace in many IT organizations.

2.4.4.5 OO Life Cycle Model

While Object-Oriented (OO) technology is not new (it's roots actually go back into the
70's), the notion of a new paradigm for software development based on a body of OO
methods, processes, and tools emerged in the 90's. Like RAD, no agreed-upon,
standardized depiction of an OO life cycle model exists. However, most OO experts
would agree that the OO life cycle is similar to traditional life cycle models in that the
same activities are still performed (analysis, design, coding, testing, etc.), yet is different
from traditional life cycles in a few major ways.

First, the nature of OO development lends itself to more iteration and overlap than
other models. In part, this is because while traditional life cycles start with and
emphasize functional decomposition and are basically procedure-driven, the OO
approach stresses instead the encapsulation of data and procedural features together

30

(objects). In this way, both high-level analysis and design are accomplished in terms of
these objects and the services they provide to the user. With the OO model, the
transition from requirements to design is not a transition from a functional view of the
problem space to a structural view of the solution space, but rather, a transition from
objects in the problem space to objects in the solution space. Also, because the reuse of
objects is a key objective, the paradigm shifts from top-down to bottom-up for the
detailed design and implementation stages of the OO life cycle. This concept is
illustrated in the "fountain" model of Figure 2-14.

Real-World Entity

Real-World Systems

Figure 2-14. OO Fountain Model

Placed in the timeline context, the OO Life Cycle looks something like Figure 2-15.
Requirements and Design grow over time as decentralized clusters of objects are
implemented and refined [HEN90].

31

C Implemented ~N
System s Bottom-up

Construction
of System

Library of Classes

Cluster n

3

Fountain Model
for Clusters

Iteration from
Analysis to Design

Implementation/
Detailed Design

Time

Figure 2-15. 00 Life Cycle

2.4.4.6 Maintenance Life Cycle

We use the term maintenance to refer to changes that have to be made to software after
it has been delivered to the customer [MAR83]. Many of the life cycle models reviewed
here include a phase labeled "maintenance", however, the maintenance phase of the life
cycle itself can also be considered a type of software process model. While it is often
looked at as a miniature version of the software development process, in reality, there
are differences. The maintenance process needs a quick, yet controlled approach for
responding to emergencies which affect business operations; there is also the problem
of juggling and prioritizing diverse, unrelated requests from the user community; the
process must also deal with the need to continuously assess the impact of changes over
time on the operational system's performance, flexibility, and maintainability. Figure 2-
16 provides one example of a life cycle model specifically geared to maintenance.

32

■
■Assist Users

■ Initiate Systems
Inves. Request

■Monitor Production
System

■ Respond to
Emergencies

■ Report Performance
•Initiate Systems
Inves. Request

From
Information ■
Planning

Into. Plan
Coord.

Initiate
Systems
Inves.
Request

Maintain Backlog Data
Establish Priorities
Communicate Status and Plan
Schedule Change Analysis
Schedule Modification and Implementation

Log and
Acknowledge
Request
Analyze and
Classify Request

Change Analysis

■ Develop Work
Plan

Identify Specific
Changes Req'd

Analyze Cost
Benefit

System Modification

■ Revise User's Manual

• Review Detail of Changes

■ Prepare Program Changes

■Test Changes

Implementation

. Train Personnel

• Introduce
Modification

Review for
Acceptance into
Production

■ Update System
Program History

■Summarize Result:
of Evaluation

■Evaluate Need to
Rewrite

-To

Information

Planning

Figure 2-16. An Example of a Maintenance Life Cycle

2.4.4.7 Comparative Analysis

Some things become apparent when these various life cycle models are reviewed
together in this way. The conclusions of our comparative analysis are as follows:

• The set of activities needed to produce any software product and manage the
corresponding software project are similar. There is a common set of activities
associated with software development and maintenance. While each life cycle
may use a different name and description of the activity, they are still more
similar than different. For instance, every life cycle uses the notion of
requirements analysis, design, implementation, and verification.

• The order, duration, concurrency, and iterative nature of activities is different
depending on the objectives of each model. In other words, the ways the
activities are fitted together are different. For instance, while requirements
analysis is a task with a fixed order and duration in the Waterfall model, it is
iterative in the evolutionary development model.

• For each common activity, there are countless way of accomplishing the
activity. Methods, tools and techniques constrain and determine the way work
is accomplished. For example, requirements can be gathered using either a
facilitated meeting, focus groups, or structured interviews. Code can be

33

"implemented" by selecting code from a reuse library, generating it from a CASE
tool, or by writing a series of instructions from scratch.

• For each common activity, the outputs (or products) generated share a set of
required attributes and are used similarly as inputs to other activities. While
the result or output of a common activity may take a different form depending
on the methods, techniques, tools used, a common set of desired attributes can
still be verified.

As a result, we developed a "building blocks" approach to tailoring the SQF to various
life cycle models. This approach is discussed in the next section.

2.4.4.8 Building Blocks Approach

Our re-engineering approach to tailoring the SQF application to various life cycle
processes is based on the following principles:

• Adopt standard terminology in the framework for software products and
activities (the "building blocks")

• Link framework guidelines and indicators to these standard products and/or
activities

• Tailor by selecting guidelines and measures relevant to products and activities
applicable to the life cycle process

• Merge the resulting SQF inspections and measurements into the life cycle
process.

Standard terminology was adopted from the two publications listed below. The two
efforts which resulted in these publications acknowledged the similarities among the
different life cycle models and attempted to provide guidance which encompasses all of
the various life cycle models. The purpose of both publications is to define a set of
mandatory activities for the development and maintenance of software, regardless of
the particular life cycle used. They are:

• IEEE Standard for Developing Software Life Cycle Processes (Std 1074-1991)

• U.S. MIL-STD 498 (Software Development and Documentation)

MIL-STD 498 defines 18 common activities and uses Data Item Descriptions (DIDs) to
specify a set of associated output products or deliverables that should be produced as
part of any software development effort. The standard also contains some good
examples of how the standard could be applied to different development strategies.
IEEE 1074 defines 17 processes and 65 activities. While the names of activities and
processes in these standards differ, there is much overlap in terms of the process
"building blocks" defined. Each activity in 1074 is described by 1) inputs, 2) actions to
be performed, and 3) outputs generated. The outputs of an activity are the measurable
or inspectable "products". Unlike the DID approach used in MIL-STD 498, the output

34

information contained in this standard does not specify the production of any specific
deliverable, but rather focuses on the information that needs to be passed between
activities.

Examples of the activities and products are listed in the following table.

Example Activities Example Products

Implement Problem Reporting Method Corrections Problem Reported Info.

Concept Exploration Statement of Need

System Allocation Recommendations (feasibility studies)

Requirements System Architecture

Design Software Interface Requirements

Implementation Software Requirements

Plan V&V Software Architecture

Execute the Tests Software Design Description

Source Code

Test Planned Info.

Test Summary Reported Info.

2.5 Re-engineered SQF

This section describes the results of the SQF Re-engineering task.

We will refer to the last version of the SQF prior to this re-engineering task as Version
1.5. Figure 2-17 illustrates the history of the SQF leading to Version 1.5. It is essentially
similar in structure and in method of application to the two major versions that
preceded it [MCC77], [BOW85]. Version 1.0 was created as part of the Quality
Evaluation System (QUES) development contract which incorporated the DOD-STD-
2167A terminology from the STARS Software Evaluation Report DIDs, added Ada-
specific examples, and extended the scoring equation methodology for tool automation.

The SQF was placed under configuration management and given version designations
as part of SPS' QUES maintenance contracts for Rome Laboratory because the
framework was delivered in database form as part of the QUES software deliveries.
The version numbers match the QUES software version numbers; changes from Version
1.0 through 1.5 were only minor corrections to question text and to scoring equations.

35

RADC-TR-77-369

Factors in Software
Quality

[McCall, et.al., of GE]

^
BADC-TR-85-37

Specification of Software
Quality Attributes

[Bowen, et.al., of Boeing]

k,i!'r:.;

STARS Software
Evaluation Report

DIDs
1984

Framework
Distributed with

QUES 1.5

SQF1.4

SQF1.1

iiiiKiiiiiiiiiiiit

- i
_ ?.- -i.h:- £;■.•■-i

\-'?~- -. i
: ••..•j»Ar-|

SQF1.0

Figure 2-17. Origin of SQF Version 1.5.

A new version constructed from this re-engineered design would be designated 2.x.
We have not constructed a complete version 2.0 in this effort, but have prototyped a
slice of the framework for the factors of Portability (see section 2.5.5) and Correctness
(see section 3.4) to illustrate the concepts.

2.5.1 Re-engineering to Improve Adaptability

Our objective in re-engineering the SQF is to address some of the deficiencies of the
previous design in terms of usability, adaptability, understandability, and
completeness. An important characteristic of any framework is its ability to adapt to a
variety of real-world software development situations.

There are three main adaptability concerns that comprise different points of view into,
or dimensions of, the framework s structure:

• quality factors

• life cycle processes

• software products

Quality Factors Dimension

The SQF quality factors represent different, although not orthogonal (i.e., independent),
desirable characteristics of a software product. They can be thought of as various
aspects or facets of quality, or as a partitioning of quality-related requirements. The
current set of 13 factors is meant to be applicable to a broad range of software-intensive
systems in many domains.

Recognizing that not all systems have the same quality requirements to the same
degree, factors are selected and ranked in order of priority. This allows developers and
customers to discuss the relative importance among the requirements as a prelude to
making trade-offs. Some factors, for example, are known to be opposing in that
optimizing one will have a negative impact on the other. Trade-offs among other

36

factors, while not opposing, simply reflect the need to prioritize the application of
limited resources.

Measurable attributes of the software products are linked to factors via the factor-
criterion-metric hierarchy of the framework. This permits tailoring of quality
evaluation to the selected factors of interest.

Life Cycle Processes Dimension

The software development life cycle is a temporal view of the steps of a development
process. The SQF was originally based on the waterfall life cycle model, and Version 1.5
uses the DOD-STD-2167A terminology. There is one Version 1.5 data collection form
for each life cycle phase, and the architecture level at which the data is collected varies
as shown in Figure 2-18. The simplicity of the waterfall model makes it easy to
understand. Using the waterfall model as a basis for the SQF structure, however, makes
it difficult to adapt the framework for use in non-waterfall environments.

Life
Cycle
Phase

System
Requirements

Analysis

Software
Requirements

Analysis

Architecture
Level

System CSCI

Preliminary
Design

CSCI

CSC

Detailed
Design '■■

CSCI

CSC

CSU

Code* Unit
Test

CSCI)

CSC

CSU

Figure 2-18. SQF 1.5 Data Collection Designed for Waterfall Process.

The purpose of the life cycle aspect of the framework structure is to convey when quality
evaluations are to be performed, and to show how the nature of the evaluation changes
over the course of the life cycle. The main reason that the nature of the evaluation
changes is that the software products vary as discussed in the following section.

Software Products

As the software development life cycle progresses, products are created that convert
abstract concepts into more concrete representations. As these representations approach
the software system in its final form, our ability to evaluate the quality of the software
improves. Early in the life cycle, quality evaluations are predictive, in that they can
only indicate the quality of the end product by assessing the quality of intermediate
products. It may not be until the system is fully operational in its target environment
that its quality can be truly assessed.

Early life cycle evaluations are also mainly heuristic or theoretical, because they are
based on assumptions and guidelines that may not have a proven link to the quality of

37

the end product. Having a complete, robust set of requirement specifications, for
example, is a good start, but is no guarantee that the product will actually fulfill those
requirements. Despite these limitations, the SQF emphasizes early life cycle
evaluations because the earlier a quality problem is found, the lower the cost to correct
it.

Software products, such as requirements specifications, architecture, design, code, test
plans, and documentation, are outputs of activities performed during the life cycle, and
their size is an indication of the amount of work performed during that activity.

2.5.2 Re-engineering the Organizational Structure

The SQF's organizational structure is the skeleton of the framework. Like any
framework, it provides an organized way of thinking about the problem—in this case,
evaluation of software quality. As discussed in section 2.5.1, the structure has three
basic dimensions:

• quality factors

• life cycle processes

• software products

The quality factor dimension addresses what to evaluate, the life cycle dimension
addresses when and how often, and the product dimension addresses how much, or what
portions, of the system to evaluate.

The life cycle processes and products dimensions are linked by the association of a
product with one or more activities. If a product is either created by or modified by an
activity, then the product's measurement is associated with that activity. Measurement
should be done each time that activity is performed, and should be as of the completion
of that activity. Thus the activity provides a "time stamp" for the measurement.

Adaptation of Life Cycle Models

By viewing software life cycle processes as comprised of the basic building blocks of
activities and products, it is possible to construct different life cycle models by
combining these building blocks as discussed in section 2.4.4. Life cycle models (such
as waterfall, modified waterfall, incremental, and evolutionary) are differentiated by
which activities are included, how the activities are ordered, and what portion of the
system is addressed at a time. By tying quality guidance, inspections, and
measurements to these basic building blocks, the quality framework is then applicable
to a wide range of life cycle models.

instrumentation for Quality Measurement

Evaluation of product quality requires up-front planning in order to have the
mechanisms in place to measure quality throughout the development life cycle. The
SQF should assist the planner by helping to identify what measurements will be

38

needed, and determine how to instrument the development process. Proper
instrumentation ensures that these measurements will be performed during the right
activities, at the right time, and on the right products.

In general, the more closely integrated the measurement is with the development
process, the more valuable the results of that measurement are likely to be. The value of
a measure is in its link to decision making and corrective action; if it is taken too late or
reported too infrequently to have any impact on the project, it is of no value other than
historical interest.

It is not enough to specify a measurement on a product without discussing issues such
as what constitutes a "unit" of observation (e.g., module, class, package, subroutine),
when a unit is considered complete enough to be measured, and how the measurement
process is affected by the rework of a unit.

Activity versus Product Measures

Activity-based measures are usually associated with project management and process
improvement viewpoints. Typical activity measurements are duration (start and end
dates), effort expended, and some measure of the amount of work performed. The
amount of work performed is used for assessment of both progress toward completion
and productivity. Estimates and actual measures are compared to assess the accuracy
of estimates. From the activity view, defects are tracked by the activity where inserted
and where detected, for causal analysis and detection efficiency analysis.

Product measures are usually associated with quality concerns. These typically fall into
the categories of structural size & complexity, defects, growth & stability, conformance
to standards, and performance. Size & complexity measures serve several purposes,
such as inputs to effort estimation, comparison of design alternatives, and isolation of
problem areas. Defect counts are typically normalized by computing density to allow
comparison with historical norms, and to look at trends over time.

Product growth & stability measures look at the change in size over time, also
comparing estimates to actuals, to identify uncontrolled growth in scope or rework risk.
Products are inspected with respect to standards, and violations are treated as a type of
defect (with the main variation being the severity associated with that type of defect).
Performance measures are specific to performance requirements, and are associated
with simulations, prototypes, or tests.

2.5.3 Re-engineered Quality Factors Hierarchy

In the SQF Version 1.5 design, the factor-criterion-metric hierarchy is used to translate
abstract user-oriented goals into concrete, measurable attributes of the software. In our
re-engineered design, the hierarchy still serves the same purpose, but has been
modified as shown in Figure 2-19. We have retained the top two levels of the hierarchy,

39

the factors and criteria. At the third level, we have subdivided the framework into two
types of information: guidelines and indicators. Rather than adding new information
to the old framework, instead, this simply reorganizes what was already there into a
more useful form.

This new split in the hierarchy makes the "measurement framework" part of the SQF
stand out from the part which is essentially geared to guidance and product
inspections. The whole SQF can be thought of as a "quality framework" for software
because it contains prescriptive guidance about how to build quality in, coupled with
verification techniques (i.e., product inspections) to assess the achievement of quality
goals.

Quality Framework

Guidance on how to achieve quality
is what differentiates a quality
framework from a
measurement framework.

«■Uh
ft* I

Inspection
Item

Figure 2-19. New Quality Factor Hierarchy.

Guidelines

The guidelines that exist in SQF 1.5 are implicit in the questions found on the data
collection forms. These implicit guidelines vary in their degree of validation, from
proven software engineering best practices to essentially theoretical ideas. Some
assume particular design paradigms such as structured analysis/structured design.

We believe that it is better to present the guidelines as straightforward statements, to
provide references that establish the degree of validation, and to explicitly identify
assumptions.

Some guidelines are conceptually applicable throughout the life cycle, but their
manifestation changes to reflect the nature of the activities being performed. The basic
pattern is outlined in the following table.

40

Life Cycle Phase

Concept
Exploration

Requirements
Analysis

Design Implementation Testing Deployment Maintenance

Evaluate
the need for

X

Specify a
requirement

for X or
incorporate X

into plan

Incorporate
X into the

design

Implement X Test
forX

Evaluate/
measure X

Same as previous
for new

development
activities

The earlier SQF approach focuses on converting a quality concern into testable
requirements. From there it can be treated as any other requirement, using the
requirements tracing technique to verify that the requirement is manifested in the
implementation and confirmed through testing. This approach assumes that the
developer already has an adequate process in place to achieve his requirements.

Our new SQF redesign incorporates this earlier requirements-driven approach and
supplements it with guidance and indicators.

For example, a guideline pertaining to the desirability of modular design would be to
specify modularity in a requirement, plan, or development standard. During design,
the guideline would describe characteristics of a modular design and recommend
evaluating modularity in design inspections and reviews. After detailed design and
implementation, the modularity achieved could be directly assessed.

New Measurement Approach

The Version 1.5 approach to measurement was to compute a value for each quality
factor based on complicated (and unvalidated) scoring equations containing a mixture
of inspection results and product measures. Our redesigned approach simplifies
measurement by eliminating the Version 1.5 scoring equations and not "measuring"
inspections. Instead, one or more indicators are used which are based on product
measures and are evaluated individually rather than as part of one massive equation.

Indicators are direct or indirect measures of properties that are demonstrably related to
a factor, criterion, or guideline. Even though Figure 2-19 shows the Indicator level of
the reengineered hierarchy to be linked to the Criterion level, indicators can be designed
for any level as shown in Figure 2-20. Our term indicator is analogous to the common
usage of the term "metric". Examples of indicators are requirements traceability, design
complexity, defect density trends, and work unit progress.

41

Factor 1

(Criterion
^

Guideline

Inspection
Item

%

Indicator

Measure

Figure 2-20. Indicators Can Be Designed for All Hierarchy Levels

2.5.4 Re-engineered Tailoring Approach

Most project-level quality efforts today focus on verifying and validating functional
quality and controlling those few other attributes of software quality that can be easily
assessed or measured (e.g., complexity). Unfortunately, these attributes are not always
the attributes that are critical to mission success. Projects need guidance uncovering a
system's true quality requirements. They need a well-defined software quality
vocabulary, a way to specify quality requirements that are meaningful to the customer,
and a way to translate those requirements into design and implementation
specifications. Additionally, projects need a way to then proactively build these quality
requirements into the software, rather than relying on testing late in the life cycle to
identify quality problems.

Projects also need a way to assess how much quality they need and how much time and
effort is needed to deliver that "amount of quality". Just like functional requirements,
quality requirements have a cost associated with them, and tradeoffs must often be
made in order to meet time and cost constraints. Many factors can influence the cost of
building in quality requirements, including:

• the level of quality required {How efficient? How precise? How reliable?)

• the relationships between quality requirements (Can a system be both highly
efficient and highly maintainable?)

• where in the life cycle quality requirements can be assessed

• whether automation is available to help assure quality

Having answers to these questions allows the project to make informed tradeoffs to
better optimize project resources while meeting project goals.

42

We have developed a flexible front-end "tailoring process" which uses the re-
engineered SQF as its basis. The output from the tailoring process is an evaluation
strategy which can be implemented on a project. This tailoring process simplifies the
specification guidance already published [BOW85] and provides examples of how the
process could be used by various types of software projects.

General Approach: The Tailoring Process

This section describes a four step tailoring process which can be used by project and
software support teams to identify a software system's true quality needs and develop a
strategy for assuring software quality 1) during the development or enhancement of the
software system and/or 2) throughout the system's life cycle. The process described
uses the SQF's software quality model as its basis.

During the tailoring process, illustrated in Figure 2-21, software quality requirements
for software-intensive systems are uncovered, specified, and used to develop a
customized evaluation plan for a development or maintenance effort. The process
includes guidance to help uncover and specify quality requirements, techniques for
making tradeoffs among factors and criteria, techniques for relating quality levels to
costs over the course of a development effort, and procedures for producing a
customizable evaluation strategy for a project or system.

Identify Functions

Requirements

Select Factors & Criteria

duality FactorsI
duality F'actorsI

Quality Factors

n
Schedule? . S°

'me"Waüonsn/ps,

Perform Feasibility Analysis

tO^

actors | Criteria f
ictors 1 Criteria I

7actors Criteria

///////
SSSSSg

K X ■*-

ÜB X X
X

s

n
Peliverables

|VorL '1'asJi.i

Eval Tasks

Project -

Develop Evaluation
Strategy

Figure 2-21. SQF Tailoring Process

43

This tailoring process should be viewed as part of the project planning process. Project
plans then drive the development of the product and the evaluation of software quality
throughout a system's life cycle. Rather than adding on new process steps, the resulting
actions derived from the SQF are merged into the existing software process as shown in
Figure 2-22.

REQUIREMENTS

2
SRS

Review

IMPLEMENTATION

2 TEST

Code
Inspection

1
Code Inspection

Figure 2-22. Tailoring by Merging SQF Inspections into Existing Process

Step 1 - Identify Functions

Different system functions, and the software supporting those functions, will have
different quality requirements. Therefore, the first step in the tailoring process involves
partitioning the system into major functional components. Functional components
perform a distinct operation such as asset management, communications, order
processing, etc. DoD systems are often partitioned into CSCIs representing a system's
major functional components. The next step is to identify the functional components
that will be supported by software. Each of these functional components will require a
tailored evaluation plan.

Next, identify the quality issues or critical success factors for each function. Quality
issues are anything that might affect achievement of the function's purpose or mission
objectives. Critical success factors are characteristics, within the system developer's
scope of control, which must be present if the success of the system is to be assured. For
example, critical success factors for the target tracking function of an on-board weapons
systems might include the need for a certain degree of precision in locating a target and
the ability to provide feedback to the operator quickly.

Critical success factors are often identified during the system and software
requirements analysis phases. Risk analysis results are often a source for quality issues.

44

Each major function component supported by software may have many quality issues
or critical success factors.

Step 2 - Select Factors and Criteria

For each major function, map the quality issues and/or critical success factors identified
in Step 1, to the SQF's quality factors. Thirteen quality factors have been identified in
the SQF's quality model. A single software function may have multiple factors
associated with it. Quality factors are user-oriented characteristics that can be
attributed to most systems. Some factors are concerned with how well the product
performs during operation, others are concerned with how well the software is
designed, and still others are concerned with how easily the software can be adapted
throughout its life cycle. The words used to describes a function's quality issues or
critical success factors may be similar to the quality factors themselves or the words
used to describe each factor (see Table 2-3).

Table 2-3. Quality Factor Definitions [SQF95]

Correctness

Efficiency

Expandability

Flexibility

Integrity

Interoperability

Maintainability

Portability

Reliability

Reusability

Survivability

Usability

Verifiability

Deals with the extent to which software design and implementation
conforms to specification and standards

Deals with the utilization of a resource

Deals with the relative effort in increasing software capabilities or
performance

Deals with the ease of effort in changing software to accommodate
changes in requirements

Deals with software security failures due to unauthorized access

Deals with the relative effort in coupling software of one system to
software of one or more other systems

Deals with the ease of effort in locating and fixing software failures

Deals with the relative effort involved in transporting software to
another environment

Deals with software failures

Deals with the relative effort for converting a portion of software for
use in another application

Deals with software continuing to perform when a portion of the
system has failed

Deals with the relative effort involved in learning about and using
software

Deals with software design characteristics affecting the effort to verify
software operation and performance

45

Knowing how the software will be used, by whom, for how long, and under what
conditions is critical to identifying the quality factors that are applicable. Another way
to identify applicable quality factors is to consider the environmental characteristics of
the software. Table 2-4 identifies some common environmental characteristics and the
quality factors most likely to be applicable to functions/systems with those
characteristics.

Table 2-4. Examples of Application/Environment Characteristics Related to Quality
Factors [BOW85]

Application/Environment Characteristics Software Quality
Factors

Human lives affected Integrity

Reliability

Correctness

Verifiability

Survivability

Long life cycle Maintainability

Expandability

Experimental system or high rate of change Flexibility

Experimental technology in hardware design Portability

Many changes over life cycle Flexibility

Reusability

Expandability

Real time application Efficiency

Reliability

Correctness

On-board computer application (embedded) Efficiency

Reliability

Correctness

Survivability

Processing of classified information Integrity

Interrelated systems Interoperability

If it is difficult to pinpoint and map quality requirements for a function to the SQF's
quality factors, consider surveying the software's existing or potential customers or end
user's to identify what's important. Table 2-3 can be used for this purpose.

46

The SQF quality model identifies a set of quality criteria, or software-oriented
characteristics that, if built into the software, ensure that the desired user-oriented
quality factors are present. Each quality criteria contributes to one or more quality
factors. Table 2-5 describes each of the 29 criteria and Table 2-6 shows the relationship
between factors and criteria.

The selected factors and criteria, in a sense, specify high level quality requirements for
the system. They identify WHAT quality characteristics the system must possess to be
successful. More detailed requirements are typically needed. Goals or targets are often
defined at this point to create more verifiable quality requirements. This would
typically be done as part of the requirements specification process. For example, if a
system must be reliable, a mean time to failure target may be identified based on an
expected operational profile. Knowing how reliable the system must be will certainly
influence design decisions, evaluation strategies, and software development costs.

It may be necessary to revise the results of this step once a feasibility analysis of the
selected factors and criteria has been performed.

Table 2-5. Quality Criteria Definitions [SQF95]

Accuracy Those characteristics of software which provide the required precision in calculations
and output

Anomaly Management Those characteristics of software which provide for continuity of operations under, and
recovery from, non-nominal conditions

Application
Independence

Those characteristics of software which determine its nondependency on database
system, microcode, computer architecture, and algorithms

Augmentability Those characteristics of software which provide for expansion of capability for
functions and data

Autonomy Those characteristics of software which determine its non-dependency on interfaces and
functions

Commonality Those characteristics of software which provide for the use of interface standards for
protocols, routines, and data representations

Completeness Those characteristics of software which provide full implementation of the functions
required

Consistency Those characteristics of software which provide for uniform design and implementation
techniques and notation

Distributedness Those characteristics of software which determine the degree to which software
functions are geographically or logically separated within the system

Document Accessibility Those characteristics of software which provide for easy access to software and
selective use of its components

Effectiveness-
Communication

Those characteristics of the software which provide for minimum utilization of
communication resources in performing functions

Effectiveness-Processing Those characteristics of software which provide for minimum utilization of processing
resources in performing functions

Effectiveness-Storage Those characteristics of the software which provide for minimum utilization of storage
resources

Functional Overlap Those characteristics of software which provide common functions to multiple systems

47

Functional Scope Those characteristics of software which provide commonality of functions among
applications

Generality Those characteristics of software which provide breadth to the functions performed
with respect to the application

Independence

Modularity

Operability

Reconfigurability

Self-Descriptiveness

Simplicity

System Accessibility

System Clarity

System Compatibility

Traceability

Training

Virtuality

Visibility

Those characteristics of software which determine its non-dependency on software
environment (computing system, operating system , utilities, input/output routines,
libraries)

Those characteristics of software which provide a structure of highly cohesive
components with optimum coupling

Those characteristics of software which determine operations and procedures
concerned with operation of software and which provide useful inputs and outputs
which can be assimilated

Those characteristics of software which provide for continuity of system operation
when one or more processors, storage units, or communication links fails

Those characteristics of the software which provide explanation of the implementation
of functions

Those characteristics of software which provide for definition and implementation of
functions in the most noncomplex and understandable manner

Those characteristics of software which provide for control and audit of access to the
software and data

Those characteristics of software which provide for clear description of program
structure in a non-complex and understandable manner

Those characteristics of software which provide the hardware, software, and
communication compatibility of two systems

Those characteristics of software which provide a thread of origin from the
implementation to the requirements with respect to the specified development envelope
and operational environment

Those characteristics of software which provide transition from current operation and
provide initial familiarization

Those characteristics of software which present a system that does not require user
knowledge of the physical, logical, or topological characteristics

Those characteristics of software which provide status monitoring of the development
and operation

48

Table 2-6. Relationship of Quality Factors to Criteria [SQF95]

FACTOR -->

Criterion Acronym

E
F
F
I
C
I
E
N
C
Y

I
N
T
E
G
R
I
T
Y

R
E
L
I
A
B
I
L
I
T
Y

S
U
R
V
I
V
A
B
I
L
I
T
Y

U
S
A
B
I
L
I
T
Y

C
O
R
R
E
C
T
N
E
S
S

M
A
I
N
T
A
I
N
A
B
I
L
I
T
Y

V
E
R
I
F
I
A
B
I
L
I
T
Y

E
X
P
A
N
D
A
B
I
L
I
T
Y

F
L
E
X
I
B
I
L
I
T
Y

I
N
T
E
R
O
P
E
R
A
B
I
L
I
T
Y

p
O
R
T
A
B
I
L
I
T
Y

R
E
U
S
A
B
I
L
I
T
Y

Accuracy
Anomaly Management
Autonomy
Distributedness

AC
AM
AU
DI

X

X X

X

X

Effectiveness - Communication
Effectiveness - Processing
Effectiveness - Storage
Operability

EC
EP
ES
OP

X

X

X

X

Reconfigurability
System Accessibility
Training
Completeness

RE
SS
TN
CP

X

X

X

X

Consistency
Traceability
Visibility
Application Independence

cs
TC
vs
AP

X

X

X

X X

X

Augmentability
Commonality
Document Accessibility
Functional Overlap

AT
CL
DO
FO

X

X

X

X

Functional Scope
Generality
Independence
System Clarity

FS
GE
ID
ST

X X

X X

X

X

X

X

System Compatibility
Virtuality
Modularity
Self-Descriptiveness
Simplicity

SY
VR
MO
SD
SI X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

49

Step 3 - Develop Assurance Strategy

The next step in the tailoring process involves developing a plan to validate whether or
not the quality requirements defined in Step 2 are being met during the systems
development or maintenance process. This plan, which describes HOW quality will be
assured, can then be integrated with project plans and implemented during the project.
Ideally, a life cycle approach to software quality assurance can be taken, whereby
quality requirements can be checkpointed at various stages of software development,
allowing the project team to take corrective action early if quality requirements are not
being met with proposed designs.

Assurance of software quality can be accomplished using a number of assurance
techniques. Most of the techniques involve evaluating or measuring some characteristic
of either 1) an interim deliverable (i.e., a specification, software component,
documentation) or 2) the end product (i.e., the operational system). Common software
evaluation techniques include static reviews or inspections, and various types of
software testing. Most evaluation techniques produce a measure of non-compliance.

The re-engineered SQF contains a series of inspection checklist items designed to
identify whether or not a software system meets quality requirements as defined by the
SQF's quality criteria. The inspection items can directly indicate whether quality
requirements have been met by identifying non-compliances so that corrective action
can be taken.

Strategies will be different for different functions, because quality requirements will be
different. For each function and selected criterion, the strategy must specify:

• The deliverables and corresponding tasks where the criterion can be evaluated

• The evaluation technique to be used

• Resources responsible for performing the evaluation

Step 4 - Perform Feasibility Analysis

In considering the feasibility of achieving the quality requirements or goals, it is
important to understand the interrelationships among the factors shown in Table 2-7.
Factors with a positive relationship are complementary; achievement of high quality in
one reinforces high quality in the other. Complementary relationships can also be
identified by noting factors that have common criteria. Negative relationships
represent conflicting requirements; achievement of high quality in one tends to lower
quality in the other. Achievement of high quality in two conflicting factors is not
impossible, simply more expensive. Conflicts identify the need for trade-off analysis.

50

Table 2-7. Factor Interrelationships [BOW85]

E I R S U C M V E F I P R
F N E U S O A E X L N O E

QUALITY FACTOR
AFFECTED->

F
I
C

T
E
G

L
I
A

R
V
I

A
B
I

R
R
E

I
N
T

R
I
F

P
A
N

E
X
I

T
E
R

R
T
A

U
S
A

I R B V L C A I D B O B B
E I I A I T I A A I P I I
N T L B T N N B B L E L L
C Y I I Y E A I I I R I I
Y T L S B L L T A T T

Y I
T
Y

S I
L
I

I
T
Y

I
T
Y

Y B
I
L

Y Y

QUALITY FACTOR
SPECIFIED

T
Y

I
T
Y

EFFICIENCY T T T

INTEGRITY T

RELIABILITY T ▲

SURVIVABILITY T T A ▲ ▼ T T T

USABILITY T ▲ A

CORRECTNESS ▲ A A A A

MAINTAINABILITY T A A A A

VERIFIABILITY T

EXPANDABILITY T ▼ T T A

FLEXIBILITY T T T T A

INTEROPERABILITY T T II |

PORTABILITY ▼

REUSABILITY T T T T A A A

Positive Relationship

Negative Relationship

In performing trade-off analyses among the quality factors /requirements, it is necessary
to consider the additional costs to build in and evaluate these quality attributes during
the course of the system's life cycle. In order to estimate the cost to achieve a quality
requirement, it is necessary for the cost estimation model to include an adjustment
factor to account for the presence or absence of the requirement as well as the level of
stringency of the requirement. We are not aware of a cost model currently in use that

51

incorporates the 13 SQF quality factors, but believe this to be an essential step for future
research.

Tailoring to Non-Waterfall Life Cycle Processes

The software development life cycle can be described in terms of the set of major
processes that it contains. Each major process in turn contains a set of activities through
which products are produced. Figure 2-23 shows an example of some typical life cycle
processes, activities, and products. In the re-engineered SQF structure, both guidelines
and indicators are linked to applicable activities and products. This linkage allows
tailoring of the framework to a user's unique life cycle process.

cycle
3rocess

Activities

Concept
Exploration

System
Allocation

Requirements

ne&
Develop

Software
Intcrfdco

Products Feasibility Study
Recommendations

Functional
Description

System
Architecture

Preliminary Software
Software Interface

Requirements Requirements

Figure 2-23. Example Life Cycle Processes, Activities, and Products.

Tailoring Software Product Measurement

Products are tangible outputs of the activities that comprise the software development
life cycle. Products include requirements specifications, architecture, design, code, test
plans, and documentation.

Most products are revised repeatedly throughout the life cycle, during their initial
creation activity and as a consequence of later rework. Prior to measurement, a product
should be in a known state of completion and be under configuration management.
This ensures that the measurement is both meaningful and repeatable.

One important question about product measures is:

Should the measurements be repeated every time the product
changes?

The answer depends on how the measurement will be used; specifically, on the
immediacy of its consequences. Will an action be taken based on the results of the
measurement? If so, it should be repeated after every significant change in the product.

For example, if there is a development standard that sets an upper limit on the control
flow complexity of a procedure, then that measurement should be taken every time the

52

procedure's implementation changes. The procedure would not be permitted to pass
inspection with a value higher than the threshold.

Another reason to associate product measures with multiple versions of the product is
to analyze a trend, for example, to confirm that quality is not degrading over time, or to
assess the stability of a product.

Size measurements, for example, such as the total number of requirements, are used to
monitor growth and stability. In this case, the analyst is looking for significant
unplanned growth because it is an early indicator of effort overruns and schedule slips.
This type of measurement would typically be taken at regular intervals after the end of
the requirements analysis activity.

2.5.5 Guidelines for Portability

This section presents the results of the re-engineered SQF for the factor of Portability.
By completing this "thread" through the framework, we have shown how the re-
engineering approach could be used to redesign the entire framework. Included in this
section are the following types of newly developed framework contents: Portability
guidelines, Portability indicators, and Portability usage scenarios.

The quality factor Portability deals with the relative effort involved in transporting
software to another environment. The IEEE dictionary [IEE91] definition is as follows:

Factor Definition

Portability The ease with which software can be transported from
one computer system or environment to another.

In the SQF hierarchical structure, Portability decomposes into the following three
criteria:

Criterion Definition

Independence Those characteristics of software which determine its
nondependency on software environment (computing
system, operating system, utilities, input/output
routines, libraries).

Modularity Those characteristics of software which provide a
structure of highly cohesive components with
optimum coupling.

Self-Descriptiveness Those characteristics of software which provide
explanation of the implementation of functions.

53

It is the criterion Independence, however, that is the essence of Portability. The other
two criteria, Modularity and Self-Descriptiveness, are shared by many other factors that
are also concerned with maintenance-type issues. In other words, these characteristics
are beneficial in any type of future software modification undertaken by someone other
than the original developer.

For this task, we limited our consideration to the criterion of Independence because this
is what the published literature discusses. The guidelines in this section relate only to
Independence and thus are unique to the factor of Portability.

Usage Scenarios for Portability

There are three main usage scenarios for the factor Portability.

• Development of software for multiple target environments

• Development of software that may be ported in the future

• Evaluation of the portability of existing software.

For the first two scenarios, the software is to be developed with the goal of Portability
from the outset. In the first case, because the software must be delivered on multiple
platforms, designing for Portability will reduce the total development effort as well as
future maintenance effort. In this first scenario, the design approach is typically to
maximize the amount of common code across all target environments. This reduces the
testing effort as well as the implementation effort; however, the design effort may be
higher to develop a common approach.

In the second case, building in Portability is an investment that is made to reduce the
potential future cost of transporting the software. For this scenario, it may be more
difficult to perform the trade-off analysis to determine how much to invest in building
in Portability because the payoff is in the future and is unquantifiable. In this scenario,
it is not likely that a great deal of design effort would be expended to reduce the
proportion of system-dependent code, but rather the approach would emphasize
encapsulation.

The third scenario seeks to determine the degree of portability of an existing software
system, or part of a system. The reason for this evaluation may be one of the following
objectives:

• Determine if transporting is feasible

• Estimate effort to transport

• Compare two or more systems or design alternatives.

This third scenario points to the need for a cost model that links the results of a
Portability evaluation to the effort required to transport the software. In this scenario,

54

the portion of the framework of interest would be those applicable to code products, to
assess the "as built" system. If the requirements were rigorously maintained and
documented, then it would be feasible to also review the requirements.

Portability Guidelines

We have created guidelines for the factor of Portability to provide an example of the re-
engineered SQF. We have concentrated on the criterion Independence because it is the
essence of Portability, and because it is also the focus of authors of reference works on
the topic of Portability.

We extracted guidelines from version 1.5 of the SQF as well as from the list of references
below. Table 2-8 summarizes the resulting Portability guidelines. Of the 28 guidelines,
5 were extracted from SQF 1.5, and the specific question identifier is noted in the table.
Generalized guidelines were extracted from the SPC Ada 95 Quality and Style
guidebook [SPC95]; guidelines dealing with Ada-specific features and implementation
dependencies were omitted.

Portability References

[HAM80] Hamlet, R.G. and R.M. Haralick, "Transportable Package Software", Software -
Practice and Experience 10 (1980), pp. 1009-1027.

[HEN88] Henderson, J., Software Portability, Gower Technical Press, 1988.

[LEC86] Lecarme, O. and M.P. Gart, Software Portability, 2nd ed., McGraw-Hill, 1986.

[LIN95] Linthicum, David, "Portability Pitfalls: Include Increased Cost, Potential
Dissatisfaction", Application Development Trends, May 1995.

[MOO90] Mooney, J.D., "Strategies for Supporting Application Portability", IEEE
Computer, Nov. 1990, pp. 59-70.

[M0093] Mooney, J.D., "Issues in the Specification and Measurement of Software
Portability", TR 93-6, URL: http://www.cs.wvu.edu/~jdm/
research/portability/reports/TR_93-6_ToC.html.

[SAX85] Saxena, S. and Field, J.A., "Portable Real-Time Software for 8-bit
Microprocessors", Software - Practice and Experience 15 (1985), pp. 227-303.

[SKA94] Skazinski, Joseph, "Porting Ada: A Report from the Field", IEEE Computer, Oct.
1994.

[SOM92] Sommerville, I., Software Engineering, 4th ed., Addison-Wesley, 1992.

[SPC95] Software Productivity Consortium, Ada 95 Quality and Style: Guidelines for
Professional Programmers, SPC-94093-CMC, Version 01.00.10, October 1995,
Chapter 7.

[WIC77] Wichmann, B. A., "Performance Considerations", Software Portability,
Cambridge University Press, Cambridge, England, 1977.

Each guideline has one or more designated products and references. A designated
product provides tailoring assistance and helps to link the guideline to the software

55

development process. References provide validation of the guideline as well as a source
for more detailed information.

Table 2-8. Portability Guidelines

Id Guideline Product(s) Reference(s)
P.001 Use a standard subset of the implementation

language; avoid non-standard extensions and
obsolescent features.

P.002 Use a version of the implementation language
that is supported on other machines.

Source Code [HEN88], [LEC86], [MOO90]

[SPC95] 7.1.1

[SQF95] ID.1.01,2,5

Source Code [MOO90], [M0093]

[SQF95] ID.2.01

P.003 Select an implementation language considering
the availability of translators for the anticipated
 target environments.

Software Design Description

Source Code

[M0093]

P.004 Build or use an automatic translator to translate
from one language dialect to another.

Statement of Need

Software Requirements

Software Design Description

[LEC86]

P.005 Limit or isolate operations dependent on word or
character size and machine dependent data
element representations.

Software Design Description

Source Code
[SOM92], [SPC95] 7.1.5,

[SQF95] ID.2.04-5

P.006 Where data types depend on machine
representations, the type definition & operations
should be in a self-contained abstract data type

 whose underlying implementation is hidden.

P.007 Allow the compiler to implicitly type numeric
data types.

P.008 Limit or isolate references to system-provided
facilities such as libraries and utilities.

Software Design Description

Source Code

[SOM92]

Source Code [LEC86]

Software Design Description

Source Code

[HAM80], [M0093]

[SPC95] 7.6, [SQF95] ID.1.03

P.0O9 Limit or isolate external input or output. Software Architecture

Software Design Description

Source Code

[M0093], [SOM92]

[SQF95] ID.2.03

P.010 Eliminate all unnecessary assumptions
throughout the design.

System Architecture

Software Design Description

[M0093]

P.011 For each environmental interface, either
encapsulate the interface completely in a suitable
module, package, object, etc., or identify a
suitable standard for the interface.

System I/F Requirements

Software Requirements

Software Architecture

Software Design Description

Source Code

[M0093], [SOM92]

P.012 Isolate operating system calls for file and process
management in one or more packages.

System Architecture

Software Design Description

Source Code

[SOM92]

P.013 For microprocessor targets, design an
intermediate level language to define low level
primitives to support real-time application
programming and constructs of high level
languages.

P.014 Design a kernel of routines that interface to the
peculiar operating system of each machine,
making the operating system of each machine
appear identical.

System Architecture

Software Design Description

Source Code

[SAX85]

Software Architecture

Software Design Description

Source Code

[HAM80], [SPC95] 7.6.9

P.015 Maintain a consistent structure in each
environment for those elements of each interface
 that are used by the application.

Software Architecture

Software Design Description

[MOO90]

56

Id

P.025

Guideline Product(s) Reference(s)
P.016 If a portable operating system is available, use the

same operating system in all target environments.
Statement of Need

Software Requirements

Software Architecture

[MOO90]

P.017 Use dynamic adaptation: determine during
execution the system characteristics and select
appropriate methods for activities that are
system-dependent.

Software Requirements

Software Architecture

Software Design Description

Source Code

[MOO90]

P.018 In designing portable compilers, design an
general intermediate language.

Software Requirements

Software Architecture

Software Design Description

[LEC86]

P.019 Design an intermediate level of software to form a
 standard interface to input/output.

P.020 Identify minimum necessary set of environmental
requirements and assumptions.

Software Architecture [LEC86]

Statement of Need

Software Requirements

[M0093]

P.021 Specifications which are sensitive to portability
goals should not overly constrain the
implementation.

Statement of Need

Software Requirements

[M0093]

P.022 Determine the desired degree of portability by
trading off costs (such as increased development
effort and /or reduced quality) and benefits
(reduced effort to port to target environments).

Statement of Need

Recommendations

Software Requirements

[M0093]

P.023 Correctness and ease of maintenance also enhance
portability.

Software Design Description

Source Code

Test Summary Reported Info.

[HEN88]

P.024 Portable software should include tools for
measurement and tuning of performance.

Statement of Need

Software Requirements

Software Design Description

Source Code

[WIC77]

Use a standard character set (e.g., ASCII). Software Requirements

Software Design Description

Source Code

[LEC86]

P.026 Document program portions most likely to
require adaptation.

Software Design Description

Source Code

[MOO90], [SPC 95] 7.1.3

P.027 Porting tasks are complicated by uncertain
availability and reliability of tools used on new
platforms, such as compilers, debuggers, and
configuration management tools.

Statement of Need

Recommendations

[SKA94]

P.028 For cross-platform development, tool selection is
critical to success in building applications
portable across operating systems and Graphical
User Interfaces (GUIs).

Statement of Need

Recommendations

[LIN95]

Evaluation of Portability

The guidelines were then broken down into inspection items and indicators to support
evaluation of the factor Portability, shown in Table 2-9. Like much of the existing SQF
(version 1.5) data collection forms, most guidelines are converted into questions that are
answered by inspection of a product of the software development life cycle.

Our research did not uncover any quantitative metrics specifically for Portability, so the
measures described in Table 2-9 were newly developed for this effort and have not been

57

used in practice. Not all guidelines have corresponding measures. Examples of
graphical representation of indicators derived from the measures are shown following
the table.

Most measures are based on a count of the number of units. For small systems, one
could substitute a measure of source lines of code (SLOC) in place of units.

Table 2-9. Portability Inspection Items and Measures

Id Guideline Inspection Items Measures
P.001 Use a standard subset of the implementation

language; avoid non-standard extensions and
obsolescent features.

Is there a requirement to use a
standardized implementation
language?

Does the unit contain any non-
standard extensions of the
implementation language?

units containing non-
standard extensions

P.002 Use a version of the implementation language
that is supported on other machines.

Is the implementation language
version supported on all target
environments?

P.003 Select an implementation language considering
the availability of translators for the anticipated
target environments.

Are there translators for the selected
implementation language on all
target environments?

P.004 Build or use an automatic translator to translate
from one language dialect to another.

Are automatic translators available to
translate different language dialects?

P.005 Limit or isolate operations dependent on word or
character size and machine dependent data
element representations.

P.008

Does the unit contain operations
dependent on word or character
size?

Does the unit contain machine
dependent data element
representations?

units containing
word/char size
dependencies

units containing
machine dependent data
represent.

P.006 Where data types depend on machine
representations, the type definition & operations
should be in a self-contained abstract data type
whose underlying implementation is hidden.

Have data types dependent on
machine representations been
encapsulated in an abstract data
type?

P.007 Allow the compiler to implicitly type numeric
data types.

Does the unit contain explicitly typed
numeric data types that could be
implicitly typed?

Limit or isolate references to system-provided
facilities such as libraries and utilities.

Does the unit contain a reference to a
system-provided facility?

units referencing
system-provided
facilities

P.009 Limit or isolate external input or output. Does the unit perform external I/O? # units performing
external I/O

P.010 Eliminate all unnecessary assumptions
throughout the design.

Are there any unnecessary
assumptions in the design?

P.011 For each environmental interface, either
encapsulate the interface completely in a suitable
module, package, object, etc., or identify a
suitable standard for the interface.

Has each environmental interface
been encapsulated?

Has a standard been identified for
each environmental interface?

units containing
environmental interface

P.012 Isolate operating system calls for file and process
management in one or more packages.

Does the unit contain operating
system calls for file or process
management?

units containing
operating system calls
for file or process mgt.

P.013 For microprocessor targets, design an
intermediate level language to define low level
primitives to support real-time application
programming and constructs of high level
languages.

Has an intermediate level language
been defined (for microprocessor
targets)?

58

P.014 Design a kernel of routines that interface to the
peculiar operating system of each machine,
making the operating system of each machine
appear identical.

P.025

Does the design provide a common
interface to all targets' operating
systems?

P.015 Maintain a consistent structure in each
environment for those elements of each interface
that are used by the application.

Does the design provide a consistent
structure for environment interfaces?

P.016 If a portable operating system is available, use the
same operating system in all target environments.

Is the operating system portable to
all target environments?

P.017 Use dynamic adaptation: determine during
execution the system characteristics and select
appropriate methods for activities that are
system-dependent.

Has dynamic adaptation been used
where feasible?

P.018 In designing portable compilers, design an
general intermediate language.

Has a general intermediate level
language been designed (for
compilers)?

P.019 Design an intermediate level of software to form a
standard interface to input/output.

Has the interface to I/O been
standardized?

P.020 Identify minimum necessary set of environmental
requirements and assumptions.

Are there any unnecessary
environmental requirements or
assumptions?

unnecessary
environmental
requirements

P.021 Specifications which are sensitive to portability
goals should not overly constrain the
implementation.

Does the portability-related
specification overly constrain
implementation?

P.022 Determine the desired degree of portability by
trading off costs (such as increased development
effort and/or reduced quality) and benefits
(reduced effort to port to target environments).

Has a portability trade-off study
been performed?

P.023 Correctness and ease of maintenance also enhance
portability.

P.024 Portable software should include tools for
measurement and tuning of performance.

Is there a requirement for
performance measurement and
tuning tools?

Use a standard character set (e.g., ASCII). Is there a requirement to use a
standard character set?

P.026 Document program portions most likely to
require adaptation.

Does the unit contain adequate
documentation for portions likely to
require adaptation?

units inadequately
documented

P.027 Porting tasks are complicated by uncertain
availability and reliability of tools used on new
platforms, such as compilers, debuggers, and
configuration management tools.

Are reliable development tools
available for all target environments?

P.028 For cross-platform development, tool selection is
critical to success in building applications
portable across operating systems and Graphical
User Interfaces (GUIs).

Is there a requirement to provide a
consistent user interface on all target
environments?

Has a cross-platform development
tool been selected?

Is the design consistent with the
capabilities provided by the selected
cross-platform development toolkit?

Portability Indicators

The following Portability indicators are derived from the measures in Table 2-9. All
three can be graphically depicted in the same way, such as is shown in Figure 2-24,
because all three are ratios. For all three indicators, the larger the ratio (the closer to

59

100%) the larger the problem, and the lower the Portability. In this example graph, the
values of a computed indicator for each CSCI are compared in a column graph.

A B C D E CSCI

Figure 2-24. Graphing Portability Indicators

1. Over-specification - the portion of total requirements that contain unnecessary
environmental requirements or assumptions.

unnecessary environmental requirements / total # requirements

2. Degree of Encapsulation - the portion of the total units that contain environmental
dependencies.

(# units containing non-standard extensions + # units referencing system-provided facilities + #
units performing external I/O + # units containing word/char size dependencies + # units
containing machine dependent data representations + # units containing environmental interface
+ # units containing operating system calls for file or process mgt.) / total # units

[Note: Do not count the same unit more than once in the above equation]

3. Documentation Inadequacy - the portion of the total units that are not adequately
documented for adaptation.

units inadequately documented / total # units

Deriving a Portability Inspection Checklist for Code

This section describes how the new Portability guidelines would be translated into a
code inspection checklist. This is relevant to all life cycle processes that include a code
inspection activity, and is relevant to all of the usage scenarios described above. The
inspection could be applied during development at the completion of implementation
and prior to integration testing, or it could be applied to an existing "as built" system as
part of a Portability evaluation.

The first step is to identify which guidelines are applicable to the product "Source Code"
as shown in Table 2-8. This is true for the following guidelines: P.001-P.003, P.005-
P.009, P.011-P.014, P.017, and P.024-P.026. For these guidelines, extract the inspection
items in Table 2-9 to create the inspection checklist for code shown in Table 2-10.

60

In the checklist, the guidelines are included for reference, to provide contextual
information about why the question is being asked. This type of information makes it
easier for the inspectors to interpret the question, and thus makes the inspections more
repeatable.

Table 2-10. Portability Inspection Checklist for Code

Id Guideline Inspection Items Answer

P.001 Use a standard subset of the implementation
language; avoid non-standard extensions and
obsolescent features.

a. Is there a requirement to use a standardized
implementation language?

b. Does the unit contain any non-standard
extensions of the implementation language?

P.002 Use a version of the implementation language
that is supported on other machines.

Is the implementation language version supported
on all target environments?

P.003 Select an implementation language
considering the availability of translators for
the anticipated target environments.

Are there translators for the selected
implementation language on all target
environments?

P.005 Limit or isolate operations dependent on
word or character size and machine
dependent data element representations.

a. Does the unit contain operations dependent on
word or character size?

b. Does the unit contain machine dependent data
element representations?

P.006 Where data types depend on machine
representations, the type definition &
operations should be in a self-contained
abstract data type whose underlying
implementation is hidden.

Have data types dependent on machine
representations been encapsulated in an abstract
data type?

P.007 Allow the compiler to implicitly type numeric
data types.

Does the unit contain explicitly typed numeric
data types that could be implicitly typed?

P.008 Limit or isolate references to system-provided
facilities such as libraries and utilities.

Does the unit contain a reference to a system-
provided facility?

P.009 Limit or isolate external input or output. Does the unit perform external I/O?

P.011 For each environmental interface, either
encapsulate the interface completely in a
suitable module, package, object, etc., or
identify a suitable standard for the interface.

a. Has each environmental interface been
encapsulated?

b. Has a standard been identified for each
environmental interface?

P.012 Isolate operating system calls for file and
process management in one or more packages.

Does the unit contain operating system calls for
file or process management?

P.013 For microprocessor targets, design an
intermediate level language to define low
level primitives to support real-time
application programming and constructs of
high level languages.

Has an intermediate level language been defined
(for microprocessor targets)?

P.014 Design a kernel of routines that interface to
the peculiar operating system of each
machine, making the operating system of each
machine appear identical.

Does the design provide a common interface to all
targets' operating systems?

P.017 Use dynamic adaptation: determine during
execution the system characteristics and select
appropriate methods for activities that are
system-dependent.

Has dynamic adaptation been used where
feasible?

61

P.024 Portable software should include tools for
measurement and tuning of performance.

P.025 Use a standard character set (e.g., ASCII).

P.026 Document program portions most likely to
require adaptation.

Is there a requirement for performance
measurement and tuning tools?

Is there a requirement to use a standard character
set?

Does the unit contain adequate documentation for
portions likely to require adaptation?

The next step is to tailor the checklist to the particular system or part of the system (e.g.,
CSCI) where it will be applied. This entails removing questions that are not applicable
to any unit in the system. For example, guideline P.013 deals with microprocessor
targets, so if the system does not operate on a microprocessor, the inspection item for
this guideline is not applicable. Another tailoring concern is to determine which, if any,
of the inspection items can be answered by using an automated tool such as a static
analyzer. For Ada code, the AdaQuest version 2.2 tool (discussed in section 3.3) would
provide inputs applicable to answering items P.OOl.b, P.005.b, and P.008.b.

Deriving Portability Measures for Code

Portability measures can be derived from Table 2-9 for the guidelines extracted for the
checklist in Table 2-10. Each unit would be inspected separately, and the data would be
collected from the results (i.e., the answers to the questions). The counts to be collected
are summarized in the table below. The denominator of the indicator ratios should be
the total number of units if an entire existing system is being evaluated for Portability.
If the inspections are occurring during development, the denominator should be limited
to the total number of units inspected so far, so as not to result in a falsely low value.

Indicator Data Collected

Degree of Encapsulation Number of units with Yes answers to any
of these questions:

P.OOl.b

P.005.a

P.005.b

P.008

P.009

P.012

Total number of units, or total number of
units inspected

Documentation Inadequacy Number of units with Yes answers to P.026

Total number of units, or total number of
units inspected

62

2.6 Support of the PSM PE Working Group

SPS strongly feels that our customer's maximum benefit from our R&D projects is
achieved when our expertise and technology is applied to users in the software
community. Consequently, as part of our SPS corporate philosophy, we engage in
developing multiple partnering relationships that take our technology "out of the lab"
and into businesses to be a force for their success. In 1994, under a separately funded
project, SPS aligned itself with an on-going initiative called Practical Software
Measurement (PSM), as an example of such a relationship.

The PSM initiative is funded by the Joint Logistic Commanders, Joint Group on Systems
Engineering. Recently, the PSM Program Management Working Group (PSM PM WG)
developed a guidebook titled Practical Software Measurement: A Guide to Objective
Program Insight [JLC96]. The guidebook uses an issue-driven approach for tailoring
measurement requirements to address the program's specific software concerns and
objectives. The guidebook was designed for Program Managers who need to more
objectively plan, track, and evaluate their software programs. Through the expertise of
the WG participants, the guidebook is based upon proven experience from actual DoD
and industry programs. With a distribution of over 3,000 copies, the guidebook has
been well-received by practitioners in the software program management community.
The guidebook was also endorsed by the DoD and is anticipated to be widely used.

Recently, a second PSM working group was formed to focus on Product Engineering
(PE) for the software community. The objective of this newly formed Working Group is
to develop guidance for ensuring quality in software products. The PSM PE guidance is
envisioned to use a similar issue-driven approach as that of the PSM PM. The
technology and experience base to support Product Engineering is immature compared
to that of Program Management and consequently, developing a guidebook for this
area is challenging.

SPS was invited to participate in this embryonic group because of our known expertise
in the software quality domain and our prior successful performance on PSM PM.
Alignment with this WG was beneficial to both parties because certification techniques
are a vital part of product engineering. The CRC/ATD Certification Process is based
upon choice of quality goals, and the PSM issue-driven approach helps the user
determine how his concerns map into established quality goals. We felt our support
was an excellent opportunity to secure valuable feedback from the user community
with respect to our research and development on CRC/ATD. In an effort to transfer
CRC/ATD-developed technology to industry users, SPS felt that it was mandatory to
align ourselves with members of the software community who could apply our
research. The results of the meeting discussions of August 20-21,1996, October 30,
1996, and December 18,1996 appear in Appendix A.

63

Some of the participants of the PSM PE WG were also participants in the PSM PM WG;
however, other participants are new to the initiative. The participants of the PSM PE
WG represent the following organizations:

Office of the Under Secretary of Defense (OSD A&T)

SPAWARSYSCOM

Defense Information Systems Agency (DISA)

National Security Agency (NSA)

Rome Laboratory

NavyCU-UDE

Naval Center for Cost Analysis

Naval Undersea Warfare Center (NUWC)

U.S. Army MICOM

U.S. Army Materiel Command

National Park Service

SBA

Lockheed Martin

TRW

Hughes

Logicon

Software Productivity Solutions, Inc.

Independent Engineering

CERC

MITRE

Institute for Defense Analysis (IDA)

Virginia Polytechnic Institute (VPI)

As seen in the results of the meetings, the scope of the Product Engineering WG was
established and an initial identification of the issue was accomplished. SPS proceeded
to categorize the issues into a organization that was patterned after the PSM PM
guidebook. The results of that activity appears in Table 2-11.

64

Table 2-11 SPS' Attempt at PSM PE Issue Categorization

Common Issue

Defined Capabilities (Is it right functionally and
structurally?)

Attribute/Category

Operational Performance (Will it operate
adequately?)

Completeness (all expected

functionality present?)

Correctness (What the user intended?)

Consistency
Understandability (of Documentation/ Clarity)

Conformance to standards
Precision (Computational/Accuracy)

Reliability
Safety
Security
Efficiency
Throughput (real-time Performance)

Fault Tolerance (Redundancy/ Survivability)
Availability
Usability (Ease of Use)

Adaptability (Will it meet future needs?)

Development Effort (How hard will it be to
build?)

Expandability (How easily can functionality be
added?)

Maintainability
Scalability
Flexibility
Portability (Common Op. Environ.)

Traceability (Quality Flow-Through)
Installability
Testability

The above issue organization was presented at the PSM PE WG meeting and was well
received by its participants. However, members indicated that "ilities" were difficult to
measure objectively and preferred to minimize their use.

The following additional notes discuss the remaining issues proposed by the group
that do not appear in the categories. For a complete list of all issues proposed by the
group, See Appendix A, minutes of 6 November 1996 meeting. For example, "Stability
of Requirements" and "Requirements Volatility" were deemed out of scope, because
these relate more to program management than product engineering. Items such as
risks and objectives should be covered in the guidance; but they are not part of the
framework. The Correctness issue is primarily measured by non-correctness (i.e.,
defects). Therefore proposed issues such as "Conflicting Requirements" should be

65

considered categories of the measure, because they are types of defects. Supportability
was deleted because it was seen as Expandability (enhance) and Maintainability (fix).

The following items did not appear to be product issues and should not be part of the
Product Engineering framework:

User Satisfaction

Defect of Quality

Defect of Quality Requirements

Predictability or Attainment of Quality Objectives

Acceptance Criteria

Concurrent Engineering

Defect Recognition (When inserted, found, fixed)

Defect of Failure

Prediction of Defects

Readiness to Deliver

The following proposed items are measures, not issues or categories. They are in the
scope of the framework, but shouldn't be addressed at the level of issues:

• MTTR

• Product Size

• Complexity

• Standard Product Quality Ranges

SPS anticipates continuing our support of the PSM PE WG under a separately funded
effort.

66

3.0 SQF Application to Reuse Certification

The objective of this task was to extract useful techniques from the SQF to be applied to
reuse certification. The first step was to analyze the SQF to determine potential
contributions to reuse certification, and this step is discussed in section 3.1. Of these
potential contributions, three were executed as tasks under this effort, and the results
are documented in sections 3.2 through 3.4. The fourth contribution influenced the
defect prediction model developed by the MITRE corporation under a separate but
related contract. The results of the SQF contribution to the defect prediction model is
discussed in section 3.5.

3.1 Analysis of the SQF for Reuse Certification

The SQF was analyzed to determine how the quality assessment methodology,
techniques, and metrics embodied within the SQF could be valuable in the certification
of reusable assets. Four potential contributions were identified and are discussed in
more detail in the following subsections.

• Code inspection checklist

• Automated static analysis

• Guidance for building quality factors into reusable code assets

• Predictive model of quality

3.1.1 SQF as a Code Inspection Checklist

Code review through inspection is a static quality evaluation technique on the list of
CRC "best bet" techniques because of its effectiveness at finding defects. There is much
written about code inspections, and there are many inspection checklists in the
literature, but none are specific to reuse certification needs. Since code inspection is a
significant part of the SQF methodology, the SQF data collection forms are a potential
resource for developing a reuse certification-specific checklist.

3.1.2 Automated Static Analysis

The SQF incorporates many measurements which could be obtained through
automated static analysis of code. There is a clear cost benefit to collecting measures
with an automated tool when possible as opposed to inspection by a human. The RC-
SQF effort demonstrated automated measurement with the AdaQuest static analysis
tool, and identified additional targets for automation such as style guideline checks.

The certification process for code assets developed under the CRC effort incorporates a
static analysis step chiefly because of the cost-effectiveness of this technique. To be
useful in the context of certification, a tool which supports the static analysis step must
clearly show defects or violations in the code.

67

3.1.3 Guidance for Building Quality Factors into Reusable Code Assets

With up-front guidance on how to achieve quality, with a "quality blueprint",
developers of reusable assets will generate more assets that pass certification for
applications that require high levels of quality. This guidance can be extracted from the
SQF using the re-engineering approach described in section 2.4. Since the Certification
Framework and certification process developed under the CRC effort concentrates on
the certification concerns of Correctness, Completeness and Understandability, these
concerns are targets for extraction of guidance from SQF. The certification concern of
Correctness maps directly to the SQF factor of the same name.

3.1.4 Predictive Quality Model

The certification process developed on the CRC effort concentrates on the reuse
certification quality concerns of Correctness, Understandability, and Completeness, and
therefore the certification techniques focus on finding these types of defects. The
Certification Framework guides the certifier to select the most cost-effective certification
techniques based on an historical profile of expected defects. An alternative to an
historical profile of defects would be a prediction of defects by measuring key
indicators in the code sample to be certified. This predictive model would, ideally, be
computed via automated static analysis of code and could predict defects by defect
classification categories (data, logic, interface, etc.).

The SQF approach combines measures from data collection forms to predict aspects of
the quality of the end product—a software system or CSCI. For an inspection
technique, a checklist should be comprehensive, so you don't miss anything. A
predictive model, on the other hand, is meant to be concise, so that you only measure
the indicators that are strongly correlated to the aspect you are trying to predict. The
model should also be comprised of independent indicators, so that you are not
measuring essentially the same effect in several different ways when one will suffice.

The MITRE corporation has developed a defect prediction model under a separate but
related contract with Rome Laboratory. The initial version of the model predicts the
total number of defects expected to be found in a unit of code based upon
characteristics of the code as well as the development environment. The key model
parameters are established empirically with dafa from the NASA Software Engineering
Laboratory (SEL). In order to be more useful for the certification of reusable
components, we would like the model to be able to predict defects by type categories
according to the CRC code defect model. These categories are Computational, Data,
Interface, Logic and Other.

The SQF is rich in measures of different aspects of code complexity as illustrated in
Figure 3-1. It is hypothesized that complexity measures could be added to the MITRE
model to attempt to predict the number of defects by category. The basic idea is that
complex code is more likely to contain defects; therefore, for example, code with high
data complexity is more likely to contain data defects.

68

Computation

compound expressions

mixed mode expressions
optimized?

calls to math library routines

Logic
Data

Interface

parameters

global variables

interface data items with
negative qualification logic

calls
called by

conditional branches

negative or compound
boolean expressions

loops

maximum nesting level

cycbmatic complexity

paths

error conditions

parameters

data items

data items modified

local variables

Other

comments
style adherence measure
non-HOL lines of code

Figure 3-1. Using Complexity Measures to Predict Defect Types.

3.2 Reuse Certification Code Checklists for Ada and C++ Assets

Two code inspection checklists were developed under this effort. The first, for Ada
code, was used in the first certification field trial, performed under the CRC effort and
documented in the CRC Volume 5 Certification Field Trial. The Ada checklist is
discussed in section 3.2.1. The second checklist, for C++ code, was used in the second
certification field trial performed under this effort (results summarized in section 4.1.1).
The C++ checklist is discussed in section 3.2.2.

3.2.1 Ada Code Inspection Checklist

Figure 3-2 illustrates how the Ada code inspection checklist was constructed.

Data
Collection

Forms
■ tor all

factors

SQF1.5

Phase A

Phase B

Phase C

Phase D

Phase E

Phase F

Phase G

Phase H

Phase I

SQF1.5
Code Inspection

Checklist

code only I apply
updates &
enhancements

cscr.
CSC

tstr W
fittertor . ;:,
Correctness & ,
Understandability

Other
Checklists

Reuse Certification
Code Inspection

Checklist

SPC
Ada Style

Guide

Figure 3-2. Method for Constructing Ada Code Inspection Checklist

69

The Ada code checklist was customized for the certification process in two ways. First,
each inspection checklist item was pre-categorized as belonging to either the
Correctness or Understandability concern and to a specific defect category. Each item
was given an identifier to encode this categorization to simplify field trial data analysis.
The second customization was that checklist items that were detected by the automated
static analysis tools used in the second step of the certification process were removed
from the checklist. Thus there was no intentional duplication between these two steps
of certification process. It must be noted that selection of questions to remove is
dependent on the capabilities provided by the automated tools used for static analysis.
For another set of tools, the result would not necessarily be the same.

The last column in Table 3-1 is the source, or reference, for the checklist item. As Figure
3-2 shows, the checklist was derived from multiple sources including the SQF. All
source checklists are collated in Appendix B for the reader's convenience, and are listed
in tabular form. A check mark indicates which items were selected. For rejected
questions, a comment explains why that question was rejected for the reuse-specific
checklist.

The resulting checklist for Ada code is given in Table 3-1. The first column of the table
is the unique identifier for each checklist item. The identifier is coded to indicate the
defect category and certification concern. The first letter indicates the defect type (C =
Computational, D = Data, I = Interface, L = Logic, and O = Other). The last letter suffix
indicates the certification concern (C = Correctness, and U = Understandability).

A sample checklist blank data collection form is included in Appendix B. This sample
checklist is identical to the one used in the first CRC Field Trial.

70

Table 3-1. Code Inspection Checklist for Ada Code

Identifier Question Source

• Computational •

C.Ol.U For functions that perform computations, are accuracy tolerances
documented?

[SQF95]
AC.1.5.e

C.02.C Do all computations use variables with consistent types, modes, and
lengths? (e.g., no Boolean variables in arithmetic expressions, or mixed
integer and floating-point)?

[EBE94],
[SQF95]
EP.2.5.e,
[NAS94]

C.03.C Are all expressions free from the possibility of an underflow or
overflow exception?

[EBE94]

C.04.C Are all expressions free from the possibility of a division by zero? [EBE94],
[DUN84]

C.05.C Is the order of computation and precedence of operators correct in all
expressions?

[EBE94]

C.06.C Are all expressions free from invalid uses of integer arithmetic,
particularly divisions?

[EBE94]

C.07.C Are all computations free from nonarithmetic variables? [EBE94]

C.08.C Are all comparisons between variables of compatible data types, modes,
and lengths?

[EBE94]

C.09.C Do all comparisons avoid equality comparison of floating-point
variables?

[EBE94],
[NAS94]

C.10.C Is the code free from assignment of a real expression to an integer
variable?

[NAS94]

C.ll.C Are all bit manipulations correct? [NAS94]

• Data •

D.Ol.C Are all data items referenced? [SQF95]
CP.1.6.e,
[DUN84]

D.02.U Do all references to the same data use single unique names? [SQF95]
CS.2.14.e

D.03.C Are all character strings complete and correct, including delimiters? [FAG76]

D.04.C Are illegal input values systematically handled? [ONE88],
[EBE94],
[DUN84]

D.05.C Are all variables set or initialized before referenced? [EBE94]

D.06.C Are all array indexes integers? [EBE94]

D.07.C For all references through pointer variables, is the referenced storage
currently allocated?

[EBE94]

71

D.08.C Are all storage areas free from alias names with different pointer
variables?

[EBE94]

D.09.C Are all variables correctly initialized? [EBE94],
[BEA94]

D.10.C Are all variables assigned to the correct length, type, storage class and
range?

[EBE94],
[BEA94]

D.ll.U Is the code free from variables with similar names (e.g., VOLT and
VOLTS)

[EBE94]

D.12.C Are all indexes properly initialized? [DUN84]

D.13.U Are all data declarations commented? [BEA94]

D.14.U Are all data names descriptive enough? [BEA94]

D.15.C Are constant values used only as constants and not as variables? [NAS94]

D.16.C For all arrays, is the attribute 'RANGE used instead of numeric literals? [SPC95]

D.17.U Are error tolerances documented for all external input data? [SQF95]
AM.2.1.e

• Interface •

I.01.C Are all propagated exceptions declared as visible and documented? [SQF95]
AM.1.5.e

I.02.C Are all propagated exceptions handled (not raised) by the calling unit? [SQF95]
AM.l.S.e,
[BEA94]

I.03.C Are reasonable ranges declared for all output values? [SQF95]
AM.3.4.e

I.04.C For all global variables, is their use justified, and are they documented? [SQF95]
AP.2.2.e,
AP.2.3.e

I.05.U Are all subprogram parameters modes shown and usage described via
comments?

[SQF95]
AP.2.4.e,
CP.1.3.e,
[NAS94]

I.06.U Does the prologue document all side effects, such as propagated
exceptions?

[SQF95]
SD.2.1.e

I.07.U Are there any interface data items with negative qualification logic (e.g.,
Boolean values that return "true" upon failure rather than success)?

[SQF95]
ST.1.3.e

I.08.C Do all units systems of formal parameters match actual parameters
(such as degrees vs. radians, or miles per hour vs. feet per second)?

[EBE94],
[NAS94]

I.09.C Are all functions free from modification of input parameters? [EBE94]

I.10.C Are global variables consistently used in all references? [EBE94]

I.11.C Are files opened before use? [EBE94]

72

I.12.C Are all input parameter variables referenced? Are all output values
assigned?

[DUN84],
[SQF95]
CP.l.ll.e,
[NAS94]

I.13.U Does each unit have a single function, and is it clearly described? [NAS94]

I.14.C Are all functions free from side effects? [SPC95]

I.15.C Is there a single entry and a single exit? [ONE88]

Selection Criteria

The criteria for selecting items for the reuse-specific checklist are as follows:

• Must address reuse certification concerns of Correctness, Understandability, or
Completeness.

• Must be applicable to code assets (as opposed to design, or test case)

• Must not require knowledge about the development process used to create the
asset

• Must be applicable to Ada, C or C++

• Must be a Yes /No question

• Must not be subjective

In fact, the reuse certification concern of Completeness was not addressed in the
checklist because of the way the field trial procedures were designed. In the field trial
procedures, Completeness was addressed up front in the Readiness step, and not in the
Code Inspection step.

SQF as a Source

SQF selections were limited to CSU-level questions for code products. The data
collection form for the Code and Unit Test Phase (i.e., Phase E) from [SQF95] was the
starting point. The Phase E DCF includes questions at the CSC level and above, and
also includes questions that pertain to documentation, problem reports, and test plans.
The CSU-level code questions from Phase E DCF are shown as the SQF source in
Appendix B.

SQF selections were not limited to the questions for the SQF factor of Correctness. All
factors were included for consideration. Many SQF questions were edited, for example,
to convert from numeric ratios to Yes/No questions, to make the questions more Ada-
specific, or to combine related questions. The Ada Style and Quality Guidelines
[SPC91] were consulted in cases where an Ada-specific interpretation was made.
Figures 3-3, 3-4, and 3-5 illustrate some examples of how SQF questions were modified.

73

AM.1.05.e When an
error condition is detected,
is its resolution determined
by the calling CSU?

1.01 .C Are all propagated
exceptions declared as
visible and documented?

I.02.C Are all propagated
exceptions handled (not
raised) by the calling unit?

Figure 3-3. Converting an SQF Question to a More Ada-Specific Interpretation.

AP.2.04.e Does the unit
contain comments tor all
parameter I/O and local
variables describing each
data item's composition
and use?

CP.1.03.e How many
identified data items are
defined (documented with
regard to their source,
meaning and format)?

I.05.U Are all subprogram
parameters' modes
shown and usage
described via comments?

Figure 3-4. Combining Related SQF Questions.

CP.1.06.e How many
defined data items are
referenced?

D.01.C Are all data items
referenced?

Figure 3-5. Converting an SQF Ratio Question to a Yes/No Question.

3.2.2 C++ Code Inspection Checklist

Figure 3-6 illustrates how the C++ code inspection checklist was constructed.

74

Reuse Certification
Code Inspection
Checklist for Ada

Reuse Certification
Code Inspection
Checklist for C++

Il

—

li
li

I
Othe
Chec

"H_
rC
klis ,ts j

!

c++
Language

References!

Figure 3-6. C++ Code Inspection Checklist

Initially, we thought that adopting an existing checklist would be the best solution to
acquiring a code checklist for C++. We surveyed industry literature and examined six
existing C++ Code Checklists [BAL92], [DST96], [FAG96], [FAU94], [GER95], [HUM95],
[KOE92], [KOE95], [MCC96], [POT94], [SOF95], [SOF96], and [VAN95]. We found that
no one checklist was appropriate. Each had goals different than reuse and certification;
each used different levels of granularity.

Therefore, we chose to modify the existing Reuse Certification Code Inspection
Checklist for Ada developed under CRC in light of this checklist research. This
approach resulted in a historical flowdown from the Ada checklist to the C++ checklist,
and provided continuity with limits on the variability. Our approach also provided
additional detail to the existing checklist, with the goal of improving its effectiveness.
Checklist questions were either modified, added, or deleted.

A summary of modifications of the Ada code checklist for C++ appears in Table 3-2 and
Figure 3-7.

75

Table 3-2. Modifications of Code Checklist

Defect Class

Computational

Data

Interface

Logic

Other

Unchanged

6

9

9

15

4

Questions

Modified

3

6

3

2

1

Added Deleted

5 0

25 1

15 2

16 0

2 0

The data is better viewed in graph form as shown in Figure 3-7.

E computational
■ Data
a Interface
□ Logic
a Other

Unchanged Modified Added Deleted

Figure 3-7. Modifications to the Code Checklist

The results of the reuse certification code inspection checklist for C++ appear in Table 3-
3. For the second Field Trial with a C++ code asset, formatting conventions were
observed to document updates and refinements to the code checklist as an attempt to
preserve the integrity of the checklist from the first Field Trail with an Ada code asset.
Specifically, italicized checklist questions indicate those questions used for Ada source
code in the first Field Trial. Non-italic questions are those that have been added to
modify the existing Ada checklist for a C++ source code component in the second Field
Trial. Strikethroughs in the checklist questions indicate that the question was valid for
an Ada source code component, but was not appropriate for a C++ source code
component due to specific language characteristics.

76

Table 3-3. Code Inspection Checklist for C++ Code

Identifier

C.01.U

C.02.C

C.03.C

C.04.C

C.05.C

C.06.C

C.07.C

C.08.C

C.09.C

C.10.C

C.ll.C

C.12.C

C.13.C

Question Source

• Computational

For functions that perform computations, are
accuracy tolerances documented?

For functions that perform computations, are
accuracy tolerances documented for variable
types that hold data?

Do all computations use variables with consistent
types, modes, and lengths (e.g., no boolean variables
in arithmetic expressions, or mixed integer and
floating-point)?

Do all computations use variables with
consistent types and/or type casting, values, and
lengths? (i.e., no boolean variables in arithmetic
expressions)

If variable types are mixed, are expected
outcomes anticipated and external to the
program block?

[SQF95] AC.1.5.e

[EBE94]

[SQF95] EP.2.5.e

[POT94] p. 139

Are all expressions free from the possibility of an
underflow or overflow exception?

Are all expressions free from the possibility of a
division by zero?

7s the order of computation and precedence of
operators correct in all expressions?

Are all expressions free from invalid uses of integer
arithmetic, particularly divisions?

Are all computations free from non arithmetic
variables?

Are all comparisons between variables of compatible
data types, modes, and lengths?

Are all comparisons between variables of
compatible data types, type cast data types, and
lengths?

[EBE94]

[EBE94]

[ENE94]

[POT94] p. 128

[EBE94]

[EBE94]

[EBE94]

[POT94] p. 139

Do all comparisons avoid equality comparison
of floating-point variables?

Is the code free from assignment of a real
expression to an integer variable?

Are all bit manipulations correct?

Is the "%" modulus operator used correctly (i.e.
not intended as a percentage)? _

Is the "/" division operator used to
accommodate a discarded remainder?

[EBE94]

[NAS94]

[NAS94]

[POT94] p. 126

[POT94] p. 127

Guideline

[SPC91] 5.5.6.a

77

Identifier Question Source Guideline

C.14.C Are compound operators assigned correctly? [POT94] p. 136

• Data •

D.01.C Are all data items referenced? [SQF95] CP.1.6.e

D.02.U Do all references to the same data use single unique
names?

[SQF95]
CS.2.1.4.e

D.03.C Are all character strings complete and correct,
including delimiters?

Are all character strings and character arrays
complete and correct, including delimiters (i.e.,
value is assigned and enough elements are
reserved to hold entire character string and
terminating null zero)?

[FAG76]

[POT94] p. 56,
76,78

D.04.C Are illegal input values systematically handled? [ONE88]

[EBE94]

D.05.C Are all variables set or initialized before referenced? [EBE94] [SPC91] 5.9.6.a

D.06.C Are all array indexes integers? [EBE94]

D.07.C For all references through pointer variables, is the
referenced storage currently allocated?

[EBE94] [SPC91] 5.4.3.d

D.08.C Arc all storage areas free from alias names with
different pointer variables?

[EBE91] [SPC91] 5.4.3.C

D.09.C Are all variables correctly initialized?

Are all variable and constants correctly
initialized?

[EBE94] 5.4.3.e

[SPC91]

D.10.C Are all variables assigned to the correct length, type,
storage class and range?

Are all variables and constants assigned to the
correct length, type, sign, precision, and range?

[EBE94]

[POT94] p. 58

D.ll.U Is the code free from variables with similar names
(e.g., VOLTand VOLTS)?

Is the code free from variables and constants
with similar names (e.g., VOLT and VOLTS)?

[EBE94]

[POT94]

D.12.C Are all indexes properly initialized?

Are all indexes properly initialized (i.e., start at
zero)?

[DUN84]

[POT94] p.79

D.13.U Are all data declarations commented? [BEA94]

D.14.U Are all data names descriptive enough? [BEA94]

D.15.C Are constant values declared as constants and not as
variables?

Are constant values used as numbers, characters,
words, or phrases?

[NAS94]

[POT94] p.46

[SPC] 3.2.5.b.e

78

Identifier Question Source Guideline

D.16.C For all arrays or enumeration types, are ranges
used for each data type instead of numeric
literals?

[SPC91] [SPC] 5.5.2.b,c

D.17.U Are error tolerances documented for all external
input data?

[SQF95] AM.2.1.e

D.18.U Are variable names in lower case as is the
customary convention?

[POT94] p. 53

D.19.U For object-oriented code, are the first letters of
class names capitalized as is the customary
convention?

[POT94] p. 53

D.20.U Are upper case letters used for "#define"
directives as is the customary convention?

[POT 94] p. 91

D.21.U Are "#define" statement used judiciously? [POT94] p. 96

D.22.C Are assignment equals "=" and equals to "=="
operators used correctly?

[POT94] p. 144

D.23.C Have assignment expressions been included in
the same condition as the logical test?

[POT94] p. 165

D.24.U Are parenthesis used in the expressions of the
"sizeof" operator (i.e., in "sizeof data",
parentheses is optional, but it is good
programming to include ();

Are parenthesis used in the expressions of the
"sizeof (data type) where parentheses are
required?

[POT94] p. 181

D.25.C Are bitwise operators, bitwise shift, and
compound bitwise shift used correctly (i.e., &,
vertical bar, A, ~, », «, «=, »=)?

[POT94] p. 186

D.26.C For object-oriented components, do classes have
any virtual functions?

If so, is the destructor non-virtual?

[BAL92] p. 5

D.27.C For object-oriented components, do classes have
all three necessary copy-constructors,
assignment operators, and destructors?

[BAL92] p. 5

D.28.C For object-oriented components, do all structures
and classes use the "." reference?

[HUM95]

[GER95]

D.29.C Are all pointers initialized to "null", deleted
only after "new", and new pointers deleted after
use?

[HUM95]

D.30.C Are names used within the declared scope? [GER95]

D.31.C For object-oriented components, is each class
declared and implemented in a single file (i.e.,
with the exception of helper classes packaged
with the primary file)?

[VAN95]

79

Identifier Question Source Guideline

D.32.C Are function arguments free from variable
argument lists (...) to avoid the inherently type-
unsafe?

[VAN95] rule 6.3

D.33.U Is multiple inheritance avoided? [VAN95] rule
12.2

D.34.U Are "return" types always provided, even if
"void"?

[DST96]

D.35.C For object-oriented components, does every
constructor initialize every data member in its
class?

[KOE92] p. 44

D.36.C For object-oriented components, do assignment
operators correctly handle assigning an object to
itself?

[KOE92] p. 44

D.37.C Is "delete []" used when deleting an array to
determine the size of the array being deleted?

[KOE92] p. 43

D.38.U For object-oriented components, are object fine
grained?

[MCC96] p. 7,10

D.39.U For object-oriented components, is the object
encapsulated (i.e., highly related methods and
data isolated)?

[MCC96] p. 7,10

D.40.U For object-oriented components, is there low
dependency between objects?

[MCC96] p. 7,10

D.41.U For object-oriented components, do objects
exhibit high fan in?

[MCC96] p. 8

• Interface •

hQhG Arc all propagated exceptions declared as visible and
documented?

[SQF95] AM.1.5.C 4.3.1.d,c

hQ^G Arc all propagated exceptions handled (not raised) by
the calling unit?

]SQF95] AM.1.5.C 4.3.1.1

5.8.3.a,b

I.03.C Are reasonable ranges declared for all output values? [SQF95]

AM.3.4.e

I.04.C For all global variables, is their use justified, and are
they documented?

[SQF95] AP.2.2.e,
AP.2.3.e

4.1.6.a,4.2.1.f

I.05.U Are all subprogram parameter modes shown and
usage described via comments?

Are all subprogram parameter types shown and
usage described via comments?

[SQF95] AP.2.4.e,

CP.1.3.e,

[NAS94]

5.2.4.a

I.06.U Does the prologue document all side effects, such as
propagated exceptions?

Does the prologue document all side effects?

[SQF95] SD.2.1.e

I.07.U Are the interface data items free from negative
qualification logic (e.g., boolean values that return
"true" upon failure rather than success)?

[SQF95] ST.1.3.e 5.5.4.a,b

80

Identifier Question Source Guideline

I.08.C Do all units systems of formal parameters match
actual parameters (such as degrees vs. radians, or
miles per hour vs. feet per second) ?

[EBE94]

I.09.C Are all functions free from modification of input
parameters?

[EBE94]

I.10.C Are global variables consistently used in all
references?

[EBE94]

I.ll.C Are files opened before use and closed when finished?

Are files opened immediately prior to access and
closed as soon as done?

[EBE94]

[POT94] p. 502

I.12.C Are all input parameter variables referenced? Are all
output values assigned?

[DUN84]

[SQF95]
CP.l.ll.e

[NAS94]

I.13.U Does each unit have a single function, and is it
clearly described?

[NAS94]

I.14.C Are all functions free from side effects? [SPC91] 4.1.3.b

I.15.C Is there a single entry and a single exit? [ONE88]

I.16.C Does the program and all its functions end with
a return statement?

[POT94] p. 48,
283

I.17.C Does each return have a closing brace (i.e., after
the end of a block, the end of the main function
[main ()], and the end of the program?

[POT94] p. 48

I.18.C Are the widths and formats of numbers
specified correctly for printing?

[POT94] p. 108

I.19.C Are the most frequently executed statements in a
"switch" arranged at the top of the list to
improve the efficiency of the code?

[POT94] p. 260

I.20.C If "ios::out" is used to open a file for writing (i.e.,
C++ creates the file), does it overwrite the
filename that exists?

[POT94] p. 501

I.21.U Is code free from "non-standard" syntactic
constructs such as unconventional preprocessor
directives?

[FAU94]

I.22.C Is passing objects by value, or by reference
avoided (e.g., where implicit conversions result
in member wise copying)?

Are dynamically allocated application objects
passed as pointers?

[FAU94]

I.23.C To decrease performance overhead, are local
variables created and assigned at once?

[BAL92] p. 6

81

Identifier Question Source Guideline

I.24.C Are files properly declared, opened, and closed? [HUM95]

[GER95]

I.25.C Is a file closed in the case of an error return? [BAL92] p. 16{

I.26.C Are all "include" statements complete? [HUM95]

[POT94]

I.27.C Are "inline" functions used only when
performance is needed?

[VAN95]

I.28.C Are "new" and "delete" used to allocate and
deallocate storage rather then "malloc" and
"free" (i.e., which are type-unsafe)?

[VAN95]

[BAL92]

I.29.C Have timing, sizing, and throughput been
addressed?

[BEA94] p. 8

• Logic •

L.01.C Are all negative boolean and compound boolean
expressions correct?

[SQF95] SI.4.3.e

L.02.C For all case statements, is the domain partitioned
exclusively and exhaustively?

For all "switch" statements, is the domain
partitioned exclusively and exhaustively?

[ONE88]

[POT94]

L.03.C Are all indexing operations and subscript references
free from off-by-one defects?

[EBE94]

L.04.C Are all comparison operators correct? [EBE94]

L.05.C Are all boolean expressions correct? [EBE94]

L.06.C Is the precedence or evaluation order of boolean
expressions correct?

[EBE94]

L.07.C Do the operands of boolean expressions have
logical values (0 or 1) or a non zero value which
is interpreted as true?

[EBE94]

[POT94] p. 47

L.08.C Does every loop eventually terminate? [EBE94]

[ONE88]

L.09.C Is the program free from goto statements?

Are "gotos" used judiciously or can other code
be substituted?

[EBE94]

[POT94] p. 271

5.6.7.a.

L.10.C Are all loops free from off-by-one defects (i.e., more
than one or fewer than one iteration)?

[EBE94]

L.ll.C Are all switch statements free from "others"
branches ?

[SPC91] 5.6.3

L.12.C Are all decisions exhaustive? [EBE94]

L.13.C Are end-of-file conditions detected and handled
correctly?

[EBE94]

82

Identifier Question Source Guideline

L.14.C Are end-of-line conditions detected and handled
correctly?

[EBE94]

L.15.C Do processes occur in the correct sequence? [DUN94]

L.16.C Are all loops free from unnecessary statements? [DUN84]

L.17.C Are all loop limits correct? [BEA94]

L.18.C Are all branch conditions correct? [BEA94]

L.19.C Are loop index variables used only within the
loop?

[NAS94]

L.20.C Are all loops free from loop index modification? [NAS94]

L.21.C Is all loop nesting in the correct order? [NAS94]]

L.22.U Do all lops have single exit and entry points? [NAS94] 5.6.4.e

L.23.U For all nested loops, are loops and loop exists
labeled?

[SPC91] 5.1.1.a, 5.1.3.a

L.24.C Is the ternary conditional operator "?:" used
correctly?

[POT94] p. 174

L.25.C Are the increment and decrement operators
properly used in postfix and prefix order?

[POT94] p. 177

L.26.U Do braces surround the body of a "for" and
"while" loop even though it only has one
statement (i.e., exhibiting good programming
practices)?

[PQT94] p. 204,
228

L.27.U Are the expected executions anticipated with
"while", "do while", and "if while", even though
the code will compile?

[POT94] p. 204,
209, 212

L.28.C Are "exit (status)", "break in case", and "break
and continue" used to correctly exit the program
or exit the loop?

[POT94] p. 212,
213, 252, 260

L.29.C Are counters initialized to zero and the
increment operator (i.e., "++") used
appropriately?

[POT94] p. 218

L.30.C When "for" loops are used, is the intent for the
condition to be tested at the top of the loop (i.e.,
is the condition ever "True" so that the loop
executes)?

[POT94] p. 229

L.31.C Is redundancy eliminated in "for" loops for
better efficiency?

[POT94] p. 235

L.32.C Do all "switch" statements contain a default
branch to handle unexpected cases?

[BAC92] p. 12

[DST96]

L.33.C Does logic handle bad input as well as good
input?

[BEA94]

Other

83

Identifier Question Source Guideline

O.01.U Is the descriptive prologue complete and correct? [BEA94]

O.02.C Are all printed or displayed messages free from
grammatical or spelling errors?

EBE94]

O.03.U Does the code follow basic structured programming
techniques?

[NAS94]
.

O.04.U Are all assumptions documented? [NAS94]

O.05.C Is the code written only in Ada?

Is the code written only in C or C++?

[SQF95] AP.3.4.e 7.6.3A

O.06.U Is each variable declared on a single line to
improve readability and maintainability?

[POT94] p. 55

O.07.U Does code contain mapping to parent
documents, or functional specifications?

[DST96]

A sample checklist blank data collection form is included at the end of Appendix B.
This sample checklist is identical to the one used in the second Field Trial.

3.3 Automated Ada Style Guideline Checks

The objective of this task was to develop an automated static analysis tool that would
identify style guideline violations in Ada code. The tool would then be used in the
static analysis step of the first certification field trial. Under the previous RC-SQF effort,
GRCFs AdaQuest tool was enhanced to perform automated data collection for a set of
SQF questions. Some of these questions were style guideline checks. Under this effort
the AdaQuest tool was enhanced to provide a more comprehensive set of style
guideline checks, and the user interface and reports were modified to suit the
certification process.

The result of this task was AdaQuest version 2.2, which was successfully used in the
first certification field trial. In the certification field trial, style guideline violations were
considered "minor" defects. In an application where portability is a concern, however,
the portability-related violations would be considered "major" defects.

The assessment of compliance to coding style standards or guidelines is part of the code
inspection method embodied in SQF 1.5. In the SQF data collection form, it is
represented as a single question to be answered for each inspected unit:

Does this unit comply with coding standards?

Answering this single question implies a great deal of inspection effort. It is most cost
effective to automate as much of this type of code inspection as possible. A single yes
or no answer, however, is not sufficient to enable corrective action, that is, correction of
the deficiencies. In order to fix the problem, a tool must report the line(s) of code and
the nature of the problem.

84

Implemented Style Checks

For Ada code, the style guidelines documented in the SPC Ada 95 Quality and Style
[SPC95] have been adopted by the Ada Joint Program Office and are widely accepted as
a standard. The new AdaQuest Auditor supports the style guideline checks and coding
practices listed in Table 3-4 [GRC95]. Where directly traceable to [SPC95], an SPC
reference number is given. "SPC 5.6.4.d" for example, refers to the fourth bullet under
section 5.6.4.

It is important to note that [SPC95] is organized into chapters of related guidelines.
AdaQuest 2.2 has implemented checks from the four chapters listed below. A total of
45 style checks were implemented; Figure 3-8 shows the breakdown by chapter. Most
of the implemented style checks fall into the programming practices category. The
"other" category includes checks derived from the SQF but not traceable to [SPC95] and
a check of cyclomatic complexity versus a threshold value of 10.

Chapter 3 Readability

Chapter 4 Program Structure

Chapter 5 Programming Practices

Chapter 7 Portability

AdaQuest v2.2 Style Guideline Checks

10 15 20 25

Readability

Program
Structure

Programming
Practices

Portability

Other

I I

I 1

1 1

Figure 3-8. Summary of Implemented Style Guideline Checks in AdaQuest 2.2.

AdaQuest 2.2 allows the user to specify a set of checks to disable in order to customize
the inspection for a particular project or organization's standards. For example, if
portability is not a concern for a project, the chapter 7 checks could be disabled.

85

Table 3-4. AdaQuest Version 2.2 Auditor Checks

Violation Identifier Reference Description

Anonymous_Types SPC 5.3.2.a Avoid anonymous types

Case_Without_Others SPC 5.6.3.1 Do not use a "when others" choice in a
CASE statement - explicitly enumerate
each possible choice

Case_Without_Ranges SPC 5.6.3.b Do not use ranges of enumeration
literals in CASE statements - explicitly
enumerate each choice instead

Code_Statement SPC 7.6.3.a Avoid machine code inserts

Comp_Unit_Not_In_Sep arateJFile SPC4.1.1.a,e Place each compilation unit in a separate
file

ConditionalJExit SPC 5.6.5.b Use "exit when..." rather than "if...then
exit"

Constrained_Discriminant_Records Discriminant record with defaults -
subtype can be changed after elaboration

Constraint_Error_Disabled SPC 5.9.5.a Remove pragma Suppress - be prepared
for Constraint_Error exceptions after
removal

Control_Parameter_Reference SQFMO.1.6 Interface parameter is used as a control
variable

Cyclomatic_Complexity Cyclomatic complexity > 10

Exits_In_Simple_Loops SPC 5.6.4.d Avoid exit statements in WHILE and
FOR loops

Explicit_In_Parameters

Explicit_Subtypes

SPC 5.2.4.a Show the mode indication of IN
parameters

SPC 3.4.1.d Avoid "anonymous subtypes" (type and
constraint) - declare and use a subtype, if
possible

For_Loops_With_Type Avoid ranges of the form X..Y in a FOR
loop - use a type/subtype name or
'RANGE instead

Formal_Part_Defaults_Not_Last SPC 5.2.3.b Place default parameters at the end of
the formal parameter list

Global_Variable_Declared SPC 4.1.8.a Avoid declaring variables in package
specifications

Global_Variable_Used SQF MO. 1.7 Do not read from global variables

Global_VariableJJpdated SQF MO.1.8 Do not write to global variables

Goto_Statement SPC 5.6.7.a. Do not use GOTO statements

Handler_Without_Others SPC 5.8.2.a Use "when others" handlers with
caution - better to explicitly name each
exception that can be encountered

86

Implementation_Defined_Attribute SPC 7.65A Avoid attributes added by the compiler
implementer

Implementation_Defined_Pragma SPC 7.65 A Avoid pragmas added by the compiler
implementer

Library_Body_Has_No_Matching_Spec SPC4.1.1.b Create an explicit specification, in a
separate file, for each library unit
subprogram

Named_Association_In_Aggregates SPC 5.6.10.C Use named association for aggregates
unless there is a conventional ordering
of the arguments

Named_Associaton_In_Instantiations SPC 5.2.2.b Use named association when
instantiating generics

Named_Blocks SPC 5.1.2-a Associate names with blocks when they
are nested

Named_Ends SPC 5.1.4.a Repeat the simple name at the end of a
block structure

Named_Exits SPC 5.1.3.a Use loop names in EXIT statements that
exit nested loops

Named_Loops SPC5.1.1.a Associate names with loops when they
are nested

Non_Scalar_Types_Private SPC 5.3.3 Non-scalar full type in package spec -
can it be PRIVATE or LIMITED
PRIVATE?

Numeric_Error_Disabled SPC 5.9.5.a Remove pragma Suppress - be prepared
for Numeric_Error or Constraint_Error
exceptions after removal

Pragma_Interface SPC 7.6.4.a Avoid interfacing Ada to other
languages

Predefined_Identifier_Redefined SPC 3.2.2.e,
3.4. l.c

Do not redefine names from package
Standard

Program_Error_Disabled SPC 5.95A Remove pragma Suppress - be prepared
for Program_Error exceptions after
removal

Real_Operand_Comparison SPC 55.6A,

7.2.7A

Avoid "=", "/=", "<", or ">" when
comparing real values - use "<■=" or
">=" instead

Representation_Clause SPC 7.6.1.a Avoid the use of representation clauses

Short_Circuit_Operators SPC 5.5.5.a Use the short circuit forms of logical
operators (AND THEN instead of AND,
OR ELSE instead of OR)

Single_Identifier_Lists Declaration with multiple identifiers -
split into separate declarations with one
identifier each

87

Storage_Error_Disabled SPC 5.9.5.a Remove pragma Suppress - be prepared
for Storage_Error exceptions after
removal

Unchecked_Conversion SPC 5.9.1.a,
7.6.8.a

Avoid using Unchecked_Conversion

Unchecked_Deallocation SPC 5.9.2.a,
7.6.6.a

Restrict the use of
Unchecked_Deallocation

Use_Clause SPC 5.7.1b Minimize using the USE clause

Use_Of_Predefined_Numeric_Type SPC 7.2.1.a Do not use the predefined numeric types
from package Standard

Use_Of_System_Constant SPC 7.6.2A Avoid using package System constants

User_Exceptions_Raised SPC 4.3.1.J Do not explicitly raise predefined
exceptions

AdaQuest User Interface and Reports

AdaQuest 2.2 is integrated into the Rational Apex Ada development environment via
the Ada Semantic Interface Specification (ASIS). ASIS is a vendor-independent interface
to the semantic contents of Ada libraries and provides the comprehensive information
needed for AdaQuest static analysis. AdaQuest analyses can be invoked from the Apex
menus, and the Apex graphical user interface provides a display and control integration
mechanism.

Code to be audited by AdaQuest must first be imported and compiled into the Apex
environment. In an Apex window, units to be analyzed are selected and then AdaQuest
is launched from the Apex Tools menu. When the AdaQuest analysis is complete, the
results appear in a new window which list violations of style guidelines for each unit
analyzed.

The Apex integration provides a very useful feature in AdaQuest: a direct link to the
specific line of code where the violation was found. To browse the code, the user
simply selects the violation message and uses the Visit button to bring up an Apex
editor window with the faulty line of code highlighted. This provides a corrective
action mechanism, linking the detection of a style guideline violation with the means to
fix the problem—editing the code. This linkage helps to prevent defects by allowing the
code developer to easily apply a "self test" to his code while it is still within his control,
and before it is checked in for integration and testing.

3.4 Guidance for Building Correctness into Code Assets

The objective of this task was to extract guidance for building the quality factor of
Correctness into reusable code assets. The guidance was generated by reverse-
engineering the SQF using the approach discussed in section 2.5. The results are
documented in this section.

The quality factor Correctness deals with "the extent to which software design and
implementation conforms to specifications and standards". The IEEE dictionary [IEE91]
offers three definitions shown below. The SQF definition of Correctness most closely
matches the second IEEE definition.

Factor Definition

Correctness (1) The degree to which a system or component is
free from faults in its specification, design, and
implementation.

(2) The degree to which software, documentation, or
other items meet specified requirements.

(3) The degree to which software, documentation, or
other items meet user needs and expectations,
whether specified or not.

89

In the SQF hierarchical structure, Correctness decomposes into the following three
criteria:

Criterion Definition

Completeness Those characteristics of software which provide full
implementation of the functions required.

Consistency Those characteristics of software which provide for
uniform design and implementation techniques and
notation.

Traceability Those characteristics of software which provide a
thread of origin from the implementation to the
requirements with respect to the specified
development envelope and operational environment.

The SQF 1.5 view of Correctness emphasizes product characteristics as opposed to
process. For example, SQF 1.5 does not ask about satisfactory completion of testing, or
deal with test stopping criteria (such as coverage of requirements or of structure) as part
of Correctness. One exception to the product focus are the questions that deal with
closure of problem reports.

The SQF 1.5 view of Correctness is also limited to functional requirements as opposed
to quality requirements. Using the SQF approach, quality requirements are treated as
separate quality factors rather than as an aspect of Correctness. The SQF 1.5 view deals
with internal characteristics of the software, however, rather than behavior.

A developer's approach to ensuring Correctness would not be complete without
consideration of testing. Therefore the SQF approach is really an adjunct to what would
be considered typical quality assurance activities, and is not a replacement for them.
The guidance in this section has supplemented the SQF guidance to provide a more
complete approach, including indicators that give the project manager or development
engineer insight into achievement of correctness.

Usage Scenarios for Correctness

There are two main usage scenarios for the factor Correctness:

1) Development of new software

2) Evaluation of the correctness of existing software.

For the development of new software, Correctness is a given in almost every situation;
it is difficult to imagine a case where Correctness is not a concern. There may be cases,
such as with throwaway prototypes, where ensuring Correctness by inspecting the
software would require more effort than is warranted.

90

The second scenario seeks to determine the Correctness of an existing software system,
or part of a system, but not during the development process. The reason for this
evaluation may be one of the following situations:

• Verification and validation by an independent organization (IV&V)

• Evaluation of test readiness

• Selection of reusable or COTS components.

For the last situation listed above, an important aspect of the evaluation would be
adherence to standards.

Correctness Guidelines

We have extracted guidelines from the data collection forms of SQF version 1.5 and
supplemented these with additional guidelines we felt were needed to round out the
SQF approach to Correctness. Table 3-5 summarizes the resulting Correctness
guidelines.

Of the 14 guidelines, 12 were extracted from SQF 1.5, and the specific question identifier
is noted in the table.

Each guideline has one or more designated products and references. A designated
product provides tailoring assistance and helps to link the guideline to the software
development process. References provide validation of the guideline as well as a source
for more detailed information.

91

Table 3-5. Correctness Guidelines

Id Guideline Product(s) Reference(s)
C_001 All capabilities and functional entities (units)

should have inputs, processing and outputs
defined (i.e., documented with source, meaning,
and format).

Software Requirements

Software Design Description

Source Code

[SQF95] CP.1.1,8

C„002 All data items should be defined (i.e., documented
with source, meaning and format).

Software Requirements

Software Design Description

Source Code

[SQF95] CP.1.3

C.003 All capabilities should be allocated to the next
level of decomposition.

Software Requirements

Software Architecture

Software Design Description

Source Code

[SQF95] CP.1.7

C_004 All capabilities or functional entities (units)
should have the processing flow (algorithms) and
decision points (conditions & alternative paths)
described.

Software Requirements

Software Architecture

Software Design Description

Source Code

[SQF95] CP.1.10

C_005 All problem reports should be resolved. Correction Problem Reported Info. [SQF95] CP.1.12

C_006 There should be no superfluous parameters in the
argument list; all parameters should be used in
the unit.

Software Design Description

Source Code

[SQF95] CP.1.11

C_007 The following items should be standardized:
design representations, calling sequence protocol,
external I/O protocol, error propagation &
handling, references to data, data representation
within the design, data naming conventions, and
definition & use of global variables.

Software Architecture

Software Design Description

Source Code

[SQF95JCS.1.1,4,7,
CS.1.10, CS.2.2, CS.2.4,
CS.2.7

C_008 All references to capabilities, units, and data items
should use a single unique name.

Software Requirements

Software Architecture

Software Design Description

Source Code

[SQF95] CS.1.12

C_009 If multiple copies of the same information are
required (e.g. copies at different nodes), there
should be procedures to establish the consistency
& concurrency of them.

Software Requirements

Software Architecture

Software Design Description

Source Code

[SQF95] CS.2.11

C_010 There should be no superfluous requirements; all
allocated requirements should be traceable to the
parent entity (system, subsystem, CSCI, etc.).

Software Requirements

Software Architecture

Software Design Description

Source Code

[SQF95] TC.1.1

C_011 Each unit's description should identify all
requirements that it helps to satisfy.

Software Design Description

Source Code

[SQF95] TC.1.2

C_012 All required capabilities should be implemented. Software Design Description

Source Code

C_013 All requirements should be tested. Test Planned Info.

Test Summary Reported Info.

C_014 Testing exit criteria should be established. Test Planned Info.

92

Evaluation of Correctness

The guidelines were then broken down into inspection items and indicators to support
evaluation of the factor Correctness, shown in Table 3-6. Like much of the existing SQF
(version 1.5) data collection forms, most guidelines are converted into questions that are
answered at a product inspection.

Like other problems found at inspections, SQF-derived problems are documented and
handled as part of the normal defect reporting and tracking mechanism. Correction of
these defects is referred to as rework.

Table 3-6. Correctness Inspection Items and Measures

Id Guideline Inspection Items Measures

C_001 All capabilities and functional entities (units)
should have inputs, processing and outputs
defined (i.e., documented with source, meaning,
and format).

Do all capabilities have inputs,
processing and outputs defined?

Does this unit have inputs,
processing and outputs defined?

units successfully
passing inspection

total # units

C_002 All data items should be defined (i.e.,
documented with source, meaning and format).

Have all data items been defined?

C_003 All capabilities should be allocated to the next
level of decomposition.

Have all capabilities been allocated
to the next level of decomposition?

C_004 All capabilities or functional entities (units)
should have the processing flow (algorithms) and
decision points (conditions & alternative paths)
described.

Do all capabilities have processing
flow and decision points described?

Does this unit have processing flow
and decision points described?

C_005 All problem reports should be resolved. # open problem reports

closed problem reports

C_006 There should be no superfluous parameters in the
argument list; all parameters should be used in
the unit.

Are all of this unit's parameters used
in the unit?

CJ)07 The following things should be standardized:
design representations, calling sequence protocol,
external I/O protocol, error propagation &
handling, references to data, data representation
within the design, data naming conventions, and
definition & use of global variables.

Is there a standard for design
representation? for calling sequence
protocol? for external I/O protocol?
for error propagation & handling?

Have conventions been established
for data references? for data
representation in the design? for data
naming ? definition & use of global
variables?

Does this unit adhere to the
established standards for ...(see
above list)?

C_008 All references to capabilities, units, and data items
should use a single unique name.

Do all references to capabilities,
units, and data items use a single
unique name?

C_009 If multiple copies of the same information are
required (e.g. copies at different nodes), there
should be procedures to establish the consistency
& concurrency of them.

Are there procedures for establishing
the consistency & concurrency of
multiple copies of the same
information?

93

C_010 There should be no superfluous requirements; all
allocated requirements should be traceable to the
parent entity (system, subsystem, CSCI, etc.).

C_011

Are all allocated requirements
traceable to the parent entity?

Each unit's description should identify ;
requirements that it helps to satisfy.

Does this unit's description identify
all requirements that it helps to
satisfy?

for each entity,

requirements
untraceable to parent
entity

total # requirements

C_012 All required capabilities should be implemented. Have all capabilities been
incorporated into the design?

Has the design been completely
implemented?

C_013 All requirements should be tested. Are all requirements traceable to test
cases?

Have all tests been successfully
completed?

C_014 Testing exit criteria should be established. Have exit criteria for testing been
established?

capabilities untraceable
to design

capabilities untraceable
to code

requirements
untraceable to test cases

tests successfully
passed

total# tests

Correctness Indicators

The most common indicator of Correctness is defects, or the lack thereof. Defect density
is compared to established norms to determine if the software development is
proceeding as expected and to evaluate the effectiveness of defect removal activities.
An example of a defect density trend indicator is shown in Figure 3-9. Defect density is
measured periodically throughout the development life cycle and compared to the
expected range of values determined from historical data.

Defect Density Expected Range

. • T 9

t
Figure 3-9. Defect Density Indicator

Closure of problem reports of specified severity levels is typically used as an acceptance
criterion, or an exit criterion before proceeding on to the next phase. Figure 3-10 shows
an example of a problem report closure indicator. The cumulative total number of
problem reports with the status of "open" and "closed" are plotted over time. The gap
between the "open" and "closed" curves represents the backlog of rework that must be
addressed to achieve Correctness. When the gap closes, all open reports have been
closed, and this is a measure of Completeness.

94

Prob lern Reports

Figure 3-10. Problem Report Closure Indicator

Completeness is typically viewed by work unit progress type indicators. Units having
successfully passed milestones (such as detailed design, implementation, inspection,
unit testing, and integration) would be counted for a development progress indicator.
Figures 3-11 and 3-12 are examples of work progress indicators. In addition to
indicating progress toward completion, plotting units passing inspection also indicates
compliance to the quality assurance (QA) process. Experience has shown that projects
that abandon inspection in order to make up schedule end up taking more time during
testing and repair of defects found during testing.

Units
Total

Passed

Figure 3-11. Work Progress Indicator for Units Passing Inspection

Units Total

Tested

i
Figure 3-12. Work Progress Indicator for Units Passing Testing

Traceability indicators focus on "holes" in a traceability matrix: what proportion of
software requirements have not been completely implemented? which units are not

95

traceable to a software requirement?, etc.. Figure 3-13 shows an example of how this
data is typically presented. Each column on the chart represents the number of untraced
requirements from one document to another, such as from the system requirements to
the software requirements specification, or from design to implementation. Each group
of columns represents the date at which the status is reported, which could be monthly,
quarterly, or at milestones. As progress is made, the height of the columns should
decrease over time. By focusing on untraced requirements rather than traced, this
indicator emphasizes problem areas and work to be done in order to achieve
Correctness.

Untraced

Jl iiMHrfji
Figure 3-13. Traceability Indicator

Another useful indicator of traceability data, shown in Figure 3-14, is a plot of the
number of requirements that have been (successfully) tested versus time. This not only
shows testing progress, but also indicates progress toward Completeness of the
implementation of all requirements.

Requirements
Total

Tested

Figure 3-14. Test Completeness Indicator

3.5 Predictive Model

The MITRE effort, contract F19628-94-C-0001, included a task entitled Predictive Models
for Categorizing Error-Prone Software Modules. This task developed a series of
predictive models to estimate the number of defects in a module based on
characteristics of the module and of the environment in which it was developed.
Information in this section is excerpted from the task Final Technical Report [TH096].

96

For the purposes of these models, a module is defined as a library unit aggregation
(LUA), which is defined as the collection of an Ada library unit and all of its associated
secondary units. The models were calibrated based on six Ada programs, ranging in
size from 35 to 75 KSLOC developed in the Flight Dynamics Division at NASA/GSFC.
See [TH096] for more details.

The initial model predicted the total number of defects. This model used the
explanatory variables listed in Table 3-7.

Table 3-7. Explanatory Variables for Total Defects Prediction

Type Explanatory
Variable

Definition

Module Characteristics Size Number of program unit declarations

Context Coupling The ratio of imported program unit
declarations to the number of exported
program unit declarations

Control Coupling Number of calls per subprogram

Workload
Complexity

Average parameters per visible subprogram

Environment Characteristics Development
Volatility

Non-defect changes /KSLOC

Reuse Percent custom code

The model was refined into a series of models, one for each defect type (i.e.,
computational, data, interface, and logic). The defect category "other" was not
modeled. Explanatory variables that measure types of complexity were added; these
are summarized in Table 3-8. All added variables are characteristics of the module.

Table 3-8. Added Explanatory Variables for Prediction of Defects by Type

Type Explanatory
Variable

Definition

Module Characteristics Cyclomatic
Complexity

Average cyclomatic complexity of all
subprograms in an LUA. Cyclomatic
complexity is the number of independent
paths in a control flow diagram.

Arithmetic
Complexity

Number of arithmetic operations per
module

Data Declaration
Complexity

Relative count of constant and number
declarations

Relational
Complexity

Ratio of the number of relational operations
per cyclomatic complexity

Exception Use Number of programmer-defined exceptions

97

Table 3-9 shows which of the explanatory variables were found to be applicable to
prediction of the different defect types.

Table 3-9. Relevance of Explanatory Variables to Defect Types

Defect Type

Variable Logic Data/Value/lnit Interface Computational

Size / / / /

Context Coupling /

Control Coupling / / /

Cyclomatic Complexity /

Workload Complexity y /

Arithmetic Complexity /

Data Declaration Complexity /

Relational Complexity /

Exception Use / /

Development Volatility / / / /

Reuse / / / /

These defect models were found to be effective at predicting the number of defects by
type. In fact, a model consisting of the sum of the predicted defects by type was found
to be slightly better at predicting the total number of defects than the original model
(based solely on the variables in Table 3-7). Thus our hypothesis about the value of
complexity measures in predicting different types of defects, as introduced in section
3.1.4, was confirmed.

98

4.0 Expansion of the Rome Laboratory Certification Framework

In order to met our objective to further develop, apply and validate the Rome
Laboratory Certification Framework (CF) intially developed under the CRC contract,
we chose to expand the CF by applying it to multiple domains and to a commercial
reuse organization as an additional pilot site. Additional CF visibility was achieved by
the CRC Web pages. All these activities are described in the subsections that follow.

4.1 Field Trial and Pilot Studies

As part of the expansion of the CF, an additional field trial of a C++ asset and pilot
studies at the Air Force Reuse Center were conducted as described below.

4.1.1 Field Trial with a C++ Code Asset

In an effort to expand the RL Certification Framework, a second Field Trial was
conducted using the same generic certification process. Field Trial #2 was conducted
with the following purposes:

• Ensure the certification process is repeatable

• Assure the certification process is understandable by other certifiers

• Collect data on the effort required to perform the certification process

• Collect data on the effectiveness of the techniques defined in the Certification
Framework

The default certification process used for both Field Trail #1 and Field Trial #2 is shown
in Figure 4-1.

Default Certification Process Overview
Code
Asset

T
Readiness

Pretty Print to standard
format
Compile, Link, Execute

Static
Analysis

Defects^

LOC
Error checking
Structural analysis
Type checking
Complexity
Programming stan dards

^ [Fix Defects)

Code
Inspection

Single inspector
Code inspection
Checklist

• Functional test cases
• Decision-to-decision

(DD) path coverage
stopping criteria

■ DD path test cases

Figure 4-1. Default Certification Process Used in the Field Trial

99

Two different roles were required to perform the field trial activities. The first role was
that of Defect Seeded and Data Analyzer. The second role was that of Certifier. The
defects were seeded without the knowledge of the Certifier.

The following major activities were performed to conduct Field Trial #2:

1. Select hardware and software tools, install, configure, and integrate.

2. Revise certification instruments.

3. Select source code component.

4. Establish component baseline.

5. Seed defects.

6. Perform the Certification Field Trial.

7. Collect Data.

8. Analyze data and results.

9. Compare Field Trials #2 results with Field Trial #1.

10. Document results of Field Trial #2 in ATD FTR Volume 1 and ATD FTR Volume
2.

The timing and duration of effort for these activities are illustrated in Figure 4-2. As
seen in this illustration, the field trial itself is but a small part of the overall activities
that are required.

Tool Selection and
Installation

Revise Certification
Instruments

Component
Selection

Baseline Seed
Defects

Field
Trial

Analye
Data

Compare
Results

Document
Results

Figure 4-2. Timing and Effort of Activities

The actual Field Trial #2 itself was scoped to a two person week effort to maintain
consistency with Field Trial #1. Field Trial #2 used a C++ code asset of about 1,000
logical lines of code. Certifying this size of asset was estimated at a 2 person-week
effort. This time period was indicated by staff at reuse libraries as that which was
available to perform such an activity. Field Trial #2 used the PC environment, and the
asset was certified for the same factors as Field Trial #1 (i.e., Correctness, Completeness,
Understandability).

100

A PC platform was selected for Field Trial #2. We used a Dell Latitude LM P133ST
Portable with Docking Station, 133 MHz Pentium Processor, 40MB RAM, 1.3 GB Hard
Drive, 14" SVGA Active Matrix Color Display, CD-ROM and Floppy Drive. The PC
platform was running MS-DOS and Windows 95.

We used the CRC Certification Tool Requirements, selection process and C/C++ Tool
Survey found in CRC's Volume 6. We also performed an additional cursory look
outside the survey for any new tools or upgrades that arrived on the COTS market since
the tool survey was conducted.

We selected the Borland C++ 5.00 Interactive Development Environment (IDE) as our
compiler for Step 1. Readiness. During the field trial, it was upgraded to version 5.01 to
achieve compatibility with other certification tools. PC-Lint 7.0 was used for Step 2.
Static Analysis. C-Vision 4.0 was used for Steps 2 and 3, Static Analysis and Code
Inspection, respectively. The McCabe Visual Toolset 5.2 was selected for Step 2 and
Step 4, Static Analysis and Testing, respectively. The McCabe Visual Toolset was
upgraded to version 5.2.2 to achieve compatibility with the Borland compiler during
instrumentation of the code.

The default certification process was analyzed and no process modifications were
needed to accommodate the characteristics of the C++ component. The same data
collection plan, procedures, and forms were used to maintain consistency across field
trials. The Ada Code Inspection Checklist was modified to accommodate a C++
component; the results of this activity appears in section 3.2.2 of this document.

To selection the code component, the following criteria were used:

• Is a utility-type program

• Is -1000 Lines of Code (excludes standard "includes", other "includes" counted
once)

• Can be certified in two weeks of effort

• Is functional as stand-alone, is a complete "system" as a single executable image

• Has computational characteristics

• Generation of test drivers requires limited effort

• Execution of component produces recognizable results for ease of testing

• Provides adequate documentation

• Compiles pre- and post- defect seeded

A example component package with the Borland IDE was selected because is satisfied
our criteria. The selected component was a mailing labels program. It updates and
displays the contents of a mailing list. New subscriptions can be input, and the user is

101

notified if subscriptions have expired. The program has data input at the unit level,
and it has file input and output. It does not have a graphical user interface, and runs
from the MS-DOS prompt. The following other code components were considered
during the selection process:

• Tools.h++ with Test Suite - COTS Standard C++ Library by Rogue Wave

• Two example components packaged with McCabe Visual Toolset

• Eighteen other code examples packaged with the Borland compiler

• Public domain components (e.g., C/C++ utility components on the World Wide
Web)

• Government/Commercial Repositories

• SPS internally-developed code components

Each of the above were eliminated as candidates as defined by our selection criteria.

The component was baselined and seeded defects were added. Defect reports were
stored on a Macintosh computer in a FileMaker Pro file. This method provided the
ability to easily document, number, sort, find, and count the reports. A thorough
analysis of the results was facilitated with these tools. Similar analyses were performed
for the second field trial to maintain continuity with the first. This also permitted a
comparison of data across both field trials. Details about the seeded and natural defects
and the entire Field Trial #2 can be found in the ATD FTR, Volume 2- Additional
Certification Field Trial. A summary of the results of the Certification Field Trial for a
C++ Asset follows.

Field Trial Overview

The certification field trial described in this report was performed by SPS personnel
Sharon Rohde, Pat Aymond and Karen Dyson.

Personnel. Ms. Rohde was selected to perform the field trial because of her experience
with the C++ language, and also because she was not involved in the derivation of the
default certification process or in writing the field trial procedures. Ms. Rohde installed
the certification tools and performed all of the certification steps.

Ms. Dyson was a contributor to the derivation of the default certification process and
co-author of the field trial procedures. Pat Aymond selected the asset to certify and
seeded additional defects into the asset, consulting with Karen Dyson. Ms. Dyson
served as consultant for the analysis of the results and lessons learned.

102

Objectives

The objectives of the field trial were as follows:

• Perform all of the steps in the default certification process

• Use all of the tools in the certification tool set

• Assess the accuracy and understandability of the procedures guidance

• Collect effort and technique effectiveness data

• Select a single asset to certify sized for a 2 staff-week certification effort

While technique effectiveness data was collected, the field trial was not intended to be
an experiment to determine the effectiveness of the techniques that comprise the default
certification process. The design and implementation of an experiment of that type is
quite involved and is significantly beyond the scope of the CRC/ATD contract. The
effort and technique effectiveness data was collected in order to compare the actual
results with comparable values culled from other research studies.

Accomplishments

All of the above objectives were satisfied by the field trial.

Asset Certified

The resources allocated to the field trial task allowed for certification of a single asset.
The asset to certify was selected based on its similarity with the asset certified in the
Ada field trial. Since the default certification process was derived for Ada code assets, it
was modified for a C++ code asset. The Reuse Code Inspection Checklist was modified
for a C++ code asset.

Size. It was estimated that an asset of about 1000 logical lines of code would be large
enough to not be trivial and yet small enough to be certified in a 2 staff-week effort.
The effort constraint was developed based on extensive interviews of reuse library
personnel performed early in the CRC contract [see the CRC Volume 4 - Operational
Concept Document], which indicated that 2 staff-weeks were about the right amount to
devote to certifying a single asset.

Defect history. In order to assess the effectiveness of the certification process at finding
defects, it was necessary to have an asset with defects known in advance. To achieve
this requirement of a defect history, we seeded defects into the selected component to
the similar extent as the Ada component in the previous initial field trial.

103

Selected Asset

The selected asset was a labels program packaged with the Borland compiler as
example code. This single executable program automatically generates mailing labels
from a master list. It reads a subscription list, inserts new subscriptions into a master
list, and prints the contents of the master list in a standard label format. It had no
recorded defect history.

Size of Asset

Lines of code (physical) 3,356 lines (est.)

Number of class libraries

Number of supporting "C'files 2

The size of the asset was determined by counting lines which included compiler
directives and the following header files with seeded defects:

• <classlib\listimp.h>

• <classlib\objstrm.h>

• <classlib\date.h>

An informal desk check type code review turned up no major or minor defects.
Therefore we decided to seed 14 additional major defects in order to have a significant
number of major defects known in advance of the field trial. The seeded defects are
summarized in the table below. All seeded defects are documented in FTR Volume 2 -
Additional Certification Field Trial, Appendix B and have an identifier starting with
"PA_". These known defects were not shown to Ms. Rohde prior to or during the field
trial.

104

Summary of Seeded Defects

Identifier Unit Lines Description Type

PA_001 labels.cpp 386-387 Changed write to read output file in Interface
subscription list destructor. Does not
write subscriptions to master file.

PA_002 date.h 31 Changed value of constant Julian date of
1/1/1901 from "2415386L" to
"1415386L"

Data

PA_003 date.h 106 Changed operator "-=" to "=" and data
type from integer to constant.

Interface

PA_004 date.h 253,256 Changed operator "-=" to "=" in inline
operator definition.

Interface

PA_005 date.h 272 Changed inline function that checks for
valid months so that months January
and December are not valid.

Logic

PA_006 listimp.h 82,83,91 Instead of zeroing out the list element
counter, it was set to 1.

Logic

PA_007 listimp.h 719 In ForEach function, incorrect while
condition does not iterate through list
properly.

Logic

PA_008 listimp.h 889 Changed notation from class name to
arithmetic operator.

Logic

PA_009 objstrm.h 299 Address of object is not stored in
database.

Logic

PA_010 objstrm.h 626 Changed inline function clear, changed
"hardfail" to "basefield".

Data

PA_011 objstrm.h 1020 Improper terminator in switch
statement; changed "break" to "switch".

Logic

PA_012 labels.cpp 414 Wrong while loop condition, changed
"iter !=0 to "iter == 7". Will not correctly
write subscription list to output file.

Logic

PA_013 labels.cpp 429 Incorrect initialization of for loop
iterator; changed "i = 0" to "i = 11". Will
not read in subscriptions from master
file unless count > 11.

Logic

PA_014 labels.cpp 605 Changed type declaration of main
routine from "int" to "unsigned int".

Interface

The seeded defects were not created in an attempt to duplicate a particular defect
profile (i.e., distribution of defect types). There are more logic defects than other types
simply because these are the easiest type to invent. It turned out to be rather more

105

difficult than we anticipated to create defects that were not caught by the compiler, nor
caused immediate catastrophic failure on execution.

In the results section below, we look at all of the known defects in the certified asset
after having completed the certification process.

Certification Results

This subsection presents the results of the second certification field trial performed by
SPS. Analysis of the data collected during the field trial and of the defects found in the
asset are included in these results. Lessons learned are discussed in the next subsection.

Data collection forms described in below were completed during the field trial. All
certification defect reports are in Volume 2 - Additional Certification Field Trial,
Appendix B, and the other completed forms are contained in this subsection under the
appropriate topic.

Staff Experience

As mentioned the overview above, three SPS personnel were involved in the field trial.
Their completed Certifier Profile Worksheets follow.

CERTIFIER PROFILE WORKSHEET

CERTIFIER NAME OR ID NUMBER Sharon Rohde

Number of years of programming experience 5 yrs

Number of years of programming experience in
asset's language

.5 yrs in C++

Education (list degrees) MS Computer Science

Experience with Certification Tools (hours with
each tool before starting certification process)

Borland C++ IDE 10 hr

PC-Lint 3hrs

McCabe Visual Toolset 32hrs

C-Vision 8hrs

106

CERTIFIER NAME OR ID NUMBER Pat Aymond

Number of years of programming experience lOyrs

Number of years of programming experience in
asset's language

5 yrs

Education (list degrees) MS, Education

Experience with Certification Tools (hours with
each tool before starting certification process)

Borland C++ IDE 2 yrs

PC-Lint 0

McCabe Visual Toolset 0

C-Vision 0

CERTIFIER NAME OR ID NUMBER Karen Dyson

Number of years of programming experience 8

Number of years of programming experience in
asset's language

.5 in Ada

Education (list degrees) BS Civil Engineering

Experience with Certification Tools (hours with
each tool before starting certification process)

Borland C++ IDE Ohrs

PC-Lint Ohrs

McCabe Visual Toolset Ohrs

C-Vision Ohrs

107

ASSET DESCRIPTION WORKSHEET

ASSET NAME Labels

Origin of asset Borland International

Application domain Information Management

Purpose of asset Updates and displays the contents of a mailing list.

Language C++

Number distinct "includes" contained
in the asset

5

Physical lines of code includes blank
lines and comments

4828

Source lines of code (physical) includes
non-blank, non-comment lines

3356 (est.)

Age of asset 1993

Version number of asset 1.0

Previous inspection and testing
activities

unknown

Additional documentation short prologue

Effort

Effort to apply the techniques for each step of the certification process was reported on
the Overall Process Data Worksheet. Included in the reported effort is the effort to
record defects, but not the effort learn how to use the tool. The graph in Figure 4-3
compares the actual effort to apply the techniques to the predicted, or default, effort.
Default effort data is taken from CRC's Volume 3-Cost Benefit Plan.

108

Technique Effort Comparison

Testing

D Code Inspection

<i) Static Analysis

Readiness

Field Trials

i Default

Total effort for Labels
asset certification =
84 hours No default data available

for Readiness
0 5 10 15 20 25 30 35 40 45

Hours/KSLOC (Physical)

Figure 4-3. Comparison of Actual Effort to Predicted

In general, the actual effort was close to the prediction.

Since our initial effort of structural testing yielded high coverage (i.e., 97%), we elected
to conclude the testing activity.

109

OVERALL PROCESS DATA WORKSHEET

ASSET:

Labels

Certification Step

ASSET READINESS STATIC ANALYSIS CODE INSPECTION TESTING

Certifier ID Sharon Sharon Sharon Sharon

Level of
Effort (hrs)

4 16 24 40

Problems in
Applying
Techniques

Problems in
Using Tools

Borland required
proper path settings
for all included
libraries and
supporting reference
files

Borland 5.00 and
McCabe 5.2 were
incompatible;
upgraded to 5.01 and
5.22, respectively

Problems
with Process
Guidance

Other
Problems

Defects

Many more natural defects were found in the asset during the field trial than were
known prior to the start. All are recorded on defect report forms in Volume 2,
Additional Certification Field Trial, Appendix B. Each report has an identifier that
indicates the source of the report using the following codes.

110

Defect Report Identifier Codes

Code Source

RD Readiness

SA Static Analysis

CI Code Inspection

TE Testing

PA Aymond's Seeded Defect

In terms of certification, the asset passed the certification concern of Completeness, and
failed in the other two concerns of Correctness and Understandability. In practice, the
certifier would face the following choices:

• Reject the asset

• Report the asset as uncertified and record all known defects

• Return the asset to the donor and request repair of known defects; repeat the
certification process after repairs

• Repair the defects; repeat the certification process after repairs

Some certifiers may choose to include defect repair as part of their certification process.
There is some debate as to whether it would be necessary to repeat the certification
process after repairs have been effected, depending on the nature and the number of the
defects found. The purpose of repeating the certification would not only be to insure
that the defects were repaired, but also to catch any new defects inserted as a result of
the repair activity.

Counting Defects. In the following graphs and tables, unless otherwise noted, defects are
counted as unique defect reports. The uniqueness criterion means that if the same
defect was detected by more than one technique, it is counted only once and credited to
the first technique to detect it. In filling out the defect reports, each report is limited to a
single package or separately compilable file. All occurrences of the same type of error,
such as a style violation, in a module are recorded on the same report, with all defective
lines of code noted on the form.

Figure 4-4 shows how many defects were found by the steps in the certification process
versus how many are known to exist at completion of the field trial. Defects
categorized as not found are seeded defects.

ill

22

20

18

t: 16
o
g- 14

DC
12

u
» 10
<D

° 8
6

4

2

0

o
z

Labels Certification Results
Defect Detection

Not Found

■ Found

Major Minor

Defect Severity

Figure 4-4. Defect Detection.

Summary of Defect Reports. The following table summarizes the defect reports logged
during the certification process steps and the seeding activity. Duplicate reports are
listed in the "prior step" shaded rows.

112

Defect Report Summary

Defect Type

Step When Found Comp. Data I/F Logic Other Total

Readiness This Step First 0 0 2 0 0 2

Static
Analysis

This Step First 0 3 8 3 0 14

Code

Inspection

This Step First

Prior Step

0 0 2

1

6

0

1 9

1

Testing This Step First

Prior Step

0 0 0 9

0

1 10

Seeding Not Found

Other Steps

1 1

0 0

0

4

0

8

0

0

2

12

Asset's Defect Profile. Figure 4-5 shows the defect profile of the asset in terms of the
known defects. The defect density of the asset's major defects, including the seeded
defects, is about average for C [see CRC's Cost Benefit Plan]. Major defects as we've
defined them for the field trial are equivalent to what are typically reported as defects.

Defect Density

Defect

Defect Density

(defects/1000 physical lines)

Severity Asset's Average for C

Major 6 6

Minor 5 N/A

113

Total Known Defects in Labels Asset

12

«> 10

O

DC

U
0)

■^
a>
Q

11

Major

7 «Minor

1 1

Defect Category

Figure 4-5. Asset's Defect Profile.

Figure 4-6 compares the asset's defect profile, including both major and minor, seeded
and natural defects, to the default profile [see CRC's Cost Benefit Plan]. One notable
difference is that there is a much lower proportion of computational defects. This fact
could have two interpretations:

• the techniques used are not effective at finding computational defects

• the asset does not have computational defects

The second explanation is more likely, since the asset is not heavily computational in
nature, only the date is computed in the labels program. No seeded defects were of the
computational category. This then indicates that we cannot assess the effectiveness of
the techniques at finding computational defects based on this field trial.

In certification, it will typically be the case that an individual asset's defect profile is
different from the default profile of any given group of assets. The more that is known
about the expected defect profile of assets to be certified, the more cost effective a
process can be designed to certify them. For example, if a group of assets to be certified
is known not to be computational, then you would not need to include a technique that
is effective at detecting computational defects.

114

Defect Profile Comparison

50%

40%

(0
4-»
u
a>
o 30%
Q

O
H

20%

10%

0%

Default

■ Labels

I I
Computation Data Interface Logic

Defect Category

Other

Figure 4-6. Comparison of Asset's Defect Profile to Default Profile.

Technique Effectiveness

As Figure 4-4 shows, all but two of the known major defects was found, and the two not
found were seeded defects. Effectiveness of the default certification process at finding
defects is better represented by the proportion of the total seeded defects found than by
the proportion of known defects found. This is because there may be additional natural
major defects in the asset, so the total number defects in the asset is unknown.

Effectiveness at Detecting Major Seeded Defects

Found Known Effectiveness

18 20 90%

Figure 4-6 shows the cumulative effectiveness of the steps in the certification process
where effectiveness is defined as the proportion of known defects found. From this we
can draw several important conclusions. We cannot, however, claim that the combined
effectiveness of the default certification process is more than 90% because we do not

115

know the total number of natural defects in the asset. Furthermore, based on the
effectiveness at finding seeded defects, we have reason to believe that more natural
defects exist.

Readiness step. There were two major defects found during the Readiness step. Even
though initially, all code needed to create an executable was available and compiled
without error, we found a major defect in documentation of the code's functionality.
After we upgraded our Borland compiler to operate with the upgraded McCabe Visual
Toolset, we uncovered a seeded error during linking in compilation.

Static Analysis step. As Figure 4-7 shows, both major and minor defects were found by
this step. The particular tool selected for this step was very good at finding defects.
The 55% effectiveness rating for minor defects shown on the graph may be misleading,
however. The automated tools used in this step are virtually 100% effective at finding
the defects that they are designed to find. The effectiveness rating indicates that what the
tools are designed to find were only about half of the known minor defects in the asset.

Cumulative Effectiveness at each Certification Step

o%
% Known Defects Detected

20% 40% 60% 80% 100%

a.
0) *•*

CO

c
o
A
Ü

Readiness

Static Analysis !

Major
■ Minor
■ Both

~ Code Inspection ■■ ■ ■ ...
0)
ü

Testing

Figure 4-7. Cumulative Effectiveness of Certification Steps.

Code Inspection step. As Figure 4-7 shows, this step found about 25% of the major
errors. This is lower than the industry studies that support code inspection as a useful
technique to detect defects. The first field trial also had a lower than expected result.
Consequently, we modified our checklist to add additional granularity to the questions
in hope of improving our results. Our repeated results show that this may not be the

116

factor behind the shortfall. Other explanations may be the certifier skill and years of
experience with the code asset language.

Testing step. Less than one-third of the defects were found in the testing step, as can be
seen by subtracting the effectiveness of the code inspection step from that of the testing
step in Figure 4-7. This may be low for this step, but using the cumulative effectiveness
of other steps, adequate coverage was achieved.

Lessons Learned from the C++ Field Trial

Choice of Component Language

Even though C++ is a popular and industry-endorsed language, several flavors are in
existence. These are two standard forms (i.e., ANSI/ISO and ARM), but others have
created de facto standards. These varieties come into play when choosing compilers
and tools that pre-process code. Different flavors of the C++ language pose
interoperability problems. Some tool vendors do not support a wide variety of C++
flavors and special customizations of the tool need to be performed. These
customizations are not supported by the tool vendor. These factors eventually affected
the selection of the asset to be certified.

Tools that support C++ are not robust. C++ is widely acclaimed as an excellent
language of choice over C, but this trend is a fairly new one. Tool vendors need
additional time to provide mature tools to meet the market demand.

Defects

All defects found in the Testing Step were unique. The first field trial has some minor
overlap of errors found in succeeding steps and separation was not as clearly evident as
in the second field trial. Nonetheless, this finding confirms that a certification process
should include a series of steps using distinct techniques designed to detect different
kinds of errors. Overall, we found that each technique is special and cannot be omitted
from the process.

The components used Field Trial #1 and Field Trial #2 differed in the total number of
minor defects. Field Trial #1 found 77 of a total of 85 minor defects and Field Trial #2
found 17 of a total of 17. This may be due to the differences in the initial, unseeded
component, as well as the differences in tools used in the two certification
environments. Field Trial #1 had the advantage of AdaQuest to find minor violations of
coding style whereas no such tool existed as a counterpart in the C++ certification
environment. In Field Trial #2, PC-Lint was used as a thorough static analysis tool and
can be thought of as a parallel tool that detects minor defects.

Many major defects were found in the earlier certification steps (i.e., prior to Code
Inspection). This finding also confirms the need for a multi-step certification process.

117

Defects found in earlier steps are less costly to find and to repair than those found in
later steps. Finding defects late in a development process (i.e., during testing) is not
usually cost-effective.

Defect Categories

The categorization of defects, both seeded and natural, is difficult to assign from the
definitions alone. The definitions as they appear in the CRC Code Defect Model could
be improved by elaboration with additional details specific to each component
language. Examples to illustrate assignments of categories would be helpful.

The Field Trial procedures would benefit by adding these examples for each kind of
defect to help the Certifier and Certification Analyst to make this determination. We
were able to adequately maintain consistency across the two Field Trials conducted at
SPS through individual staffing.

Field Trial - Certification Tools

The configuration of the certification environment is time-consuming. We needed to
artificially create the experimental environment prior to conducting the test. In a
repository situation, this environment would already be established.

Installation, learning, integration, and application of tools to a particular component is
very time-consuming. The activities are difficult to plan because of unknown obstacles
that are encountered. It is suggested to build a three month period into the schedule for
these activities alone. Using an example component that is available to the tool
vendor's technical support staff is helpful in tracking bugs and errors in installation and
operation of the tool.

Configuration and integration of tools is problem-fraught. Version incompatibility
across tools can present problems in operation. Tools are marketed as compatible, but,
as each vendor may issue monthly changes, particular versions of one tool may not
work with a version of another. Upgrades to one tool may cause an new
incompatibility in another tool which once functioned properly. Fortunately, for Field
Trial #2, vendor support was excellent and enabled us to work through the barriers.

Since vendors issue frequent versions of their software, documentation does not match
tool versions. Patches may be available, but are difficult to secure. Installation of
patches may be time-consuming and problem-ridden. This presents problems with
those who are learning the new tools or learning the differences in the new version.

Support for tools that instrument code is weak. For example, the instrumentation mode
was not sufficiently tested using a sample program provided by the vendor with the
Borland compiler and McCabe Visual Toolset. Documentation of the process was non-
existent and was created "on the fly" as the problem was solved. Bugs in the tools were

118

uncovered as the problem was resolved. We recommend that tool vendors who have
an instrumentation mode provide samples to test tool installation and functionality.

With the McCabe Battlemap, the ability to jump to the actual source line of code from
the Battlemap would improve its capabilities.

Training is a requirement for high-end tools. Complex tools give sophisticated results
and require a high learning curve to operate the tools properly. User documentation is
typically weak; we found this to be true of both Logiscope used in the first field trial
and the McCabe Visual Toolset used in the second field trial. We found that McCabe
provides manuals in large binders making it difficult to find the desired information.
On many occasions, once the information was found, it was incorrect and out-of-date,
not matching the most current version of the tool issued. Additional expertise is
required to sift through the volume of information available from the tool and interpret
the results. A high level of expertise is required to learn the tools, get them up and
running, use, interoperate, and interpret the results.

Training for the McCabe tools focuses on the theoretical underpinnings of the tool's
complexity measures and control flow theory. We found this useful; however, another
course targeting the application of the tools to a real-world situation is needed.
Currently, these services are available only on an in-house consulting basis and can
prove to be very costly for those on limited funds.

For complex tools, an excellent technical support staff relationship is required. The tool
vendors must be responsive to tool problems, otherwise, a failure to complete could
result.

Field Trial - Testing Effort

The design of the component under test greatly affects the testing effort when using a
structural testing approach. The component for Field Trial #2 had a flat calling tree
structure and was highly coupled across modules. Modules were small and had low
control flow complexity. This structure is typical, and can be expected, for a component
implemented in the C++ language. Branch coverage of 97% was easily achieved.
Whereas the calling tree structure of the component in Field Trial #1 was deeper and
the modules were longer and more complex, it proved difficult to achieve more than
80% branch coverage.

Certifier Skills

The suite of certification techniques that comprise the default certification process
includes two techniques whose effectiveness is highly dependent upon the training and
experience of the certification engineer applying the technique: code inspection and
testing. These techniques are also less automated and require more human
involvement than the readiness and static analysis steps. This implies that the results

119

may not be repeatable when comparing different certification engineers. To reduce the
variability among different engineers, and to maximize the effectiveness of the
techniques, training is essential.

The default process steps are intentionally ordered in terms of increasing skill level as
well as increasing investment of effort, so that, for example, a failure in an early step
could save wasted effort in later steps. In general, we would like the automated static
analysis tools to detect as much as possible, and we view enhancements in static
analysis capabilities as a valuable contribution to certification.

Effectiveness of Techniques

The combined effectiveness of all of the steps in the certification process is impressive
because each step tends to find different types of defects. The second field trial
confirms the results of the first, that all four steps are necessary to detect a high
proportion of defects.

Figure 4-7 shows, for example, that many of the major defects would have been missed
if we had only done static analysis. The Defect Report Summary table also shows that
there are numerous defects that testing alone would not have found.

We recommend that defect detection be pushed to the earlier certification steps. For
example, automated static analysis is a cost-effective, objective, non-cognitive technique
as compared with code inspection which requires trained staff and considerable effort.
The effectiveness of some techniques are contingent upon the persons using them.

The Code Inspection Step for Field Trial #1 and #2 were only moderately effective in
detecting defects (i.e., 37% and 27% respectively). This may be due to a relatively small
body of detectable defects over both field trials. A more definitive trial of the process
would to certify multiple assets with thousands of defects. Here, in this experiment, we
inserted "controlled" defects which may not necessarily be typical of the kind of defects
that arise naturally.

We were impressed with the ability of the upgraded Borland compiler to detect a
previously undetected major error during the Readiness step. We hope that this finding
is a trend among vendor upgrades as support the software developer and maintainer in
detecting defects early in the software life cycle.

Modifications to the Process Guidance

General. The certification process as defined by the steps of Readiness, Static Analysis,
Code Inspection, and Testing is valid. Many natural defects, as well as the seeded
defects, were found in the certified COTS components. Field Trial #2 found 7 natural
defects, and Field Trial #1 found 12.

120

Code Inspection step. In C++ with numerous, short modules, code design and its
"checklist" may become more important to major and minor errors, corrections
understandability. Design appears more closely tied to implementation of function. It
may be useful to add a reverse engineering tool to the certification environment to help
understand code structure. We found that McCabe Visual Toolset does not provide
sufficient insight.

Recommendations

Seeding defects was a difficult activity, and we cannot confirm that the defects seeded
are typical of the defects that software developers and maintainers inadvertently
introduce into source code. We recommend conducting a study to determine examples
of defects that are typical across defect types.

Additional planned empirical research should attempt to validate the certification reuse
process and procedures. Additional data could be collected for Ada, C++, components
as well as other programming languages (i.e., COBOL, FORTRAN, Pascal, C, etc.) in
follow-on pilot studies.

After a significant number of pilot tests, we recommend an additional phase of
applying the certification reuse process to multiple components of a reuse library and
collecting additional data analyses, and results for the purpose of comparison. The next
phase of validation could involve multiple reuse libraries to determine the relative
efficiency of those processes and procedures. The certification process could alternately
be expanded to other quality concerns, other domains, and other component types.

The disappointing results achieved in the Code Inspection step, suggest a topic for
future research, i.e., the study of ways to make code inspection more effective. This
research topic is also of interest to software maintainers who routinely struggle with the
comprehension of code written by others.

The results of the Field Trials is of interest to the software/systems community. The
technical paper and presentation of the first field trial at the IEEE International
Conference on Engineering of Complex Computer Systems '96 (ICES) was well-
received and drew additional conversation from its participants. We intend to follow-
up with an additional paper about the second field trial and its comparison to the first
at a future conference.

4.1.2 Support of Pilot Sites

In addition to the CRC research team consisting of SPS and its subcontractors Veriquest
and GRCI, two other organizations interested in certification reviewed the Certification
Framework and certification process for code assets. These organizations are
considered pilot sites for the CRC certification technology. Activities undertaken as
part of this effort to support these pilot sites are documented in this section.

121

The first pilot site organization was the Air Force Reuse Center at Maxwell AFB Gunter
Annex including Gunter personnel supporting the Base Level Systems Modernization
(BLSM) I program. The Reuse Center is concerned with certification of reusable
components, and expressed an interest in the certification tools and techniques. Gunter
personnel reviewed CRC documents and were briefed on the results of the first
certification field trial. To illustrate how the CRC cost/benefit model may be
customized to suit a particular organization, SPS analyzed a set of problem reports from
the Sustaining Base Information Services (SBIS) components developed under BLSM I.
The results of the analysis are presented in section 4.1.2.1. Gunter personnel were
briefed on the results of this analysis.

The second pilot site organization was Underwriters' Laboratory (UL). UL is a
commercial organization that certifies the quality and safety of many products. Now
that software has become a larger part such products, UL is in the process of developing
a certification approach that encompasses software. UL has reviewed the CRC
Certification Framework and related documents and has provided review comments
during the course of the CRC effort and this effort. Under this effort, the subcontractor
GRCI provided assistance in acquiring and installing the certification tools at UL. The
results of UL's review of the Certification Framework and UL's field trial experiment
were documented under a separately funded effort.

4.1.2.1 BLSM I Problem Report Analysis

SPS analyzed a set of 47 problem reports from the BLSM I program in order to extract
the data necessary to customize the CRC cost/benefit model to the Reuse Center
organization. This customization approach is based on the premise that past
performance is a predictor of the expected types of defects, and the rework effort
associated with these defects, for future reusable components. Even though the specific
components represented in the problem reports are not expected to be reused in a
future development effort, the data derived from the problem reports is expected to be a
better characterization of the organization than the generic (default) data presented in
the CRC Cost/Benefit Plan document.

The objectives of the analysis were to develop a custom defect profile and a custom
effort profile based on the problem reports. The first step was to assess the set of
problem reports to determine its size and scope. This analysis assumes that SPS
received all available problem reports for the CUB, AFORMS, MDS, and LOGMOD B
components. In the absence of a complete set of problem reports, it would necessary to
have a representative sample, and the required sample size would depend on the total
size of the population.

By plotting the problem report control number (assumed to be a unique identifier)
versus origination date, we can see the pattern that emerges as shown in Figure 4-8. As
a whole, the set of problem reports covers roughly a three year period. The Common
Utility and Bindings (CUB) components problem reports cover the longest period of
time. These CUB components were used in building the other systems (AFORMS,

122

MDS, and LOGMOD B). The CUB pattern shows that some CUB problems were
detected prior to the creation of the other 3 systems (pre-integration), but most were
found post-integration.

1800

1600

<5 1400
.Q

3 1200
z
g 1000
C
g> BOO
o-
a> BOO
(f)

400

200

-O-LOGMODB(5040)
-D-CUB (5050)

-JÜrAFORMS(5052)

-O-MDS(5054)

-D- ~D ID D- ^3—<ndC3-
2/28/92 9/15/92 4/3/93 10/20/93 5/8/94 11/24/94 6/12/95

Date

Figure 4-8. Control Number Characterization

12/29/95

The pareto analysis in Figure 4-9 shows that the largest number of problem reports in
the sample belongs to CUB components. Pareto analyses, a special form of a vertical
bar graph are useful in determining which problems to solve in what order. We will
generally gain more by working on the tallest bar than tackling the smaller bars. A line
can be added to show the cumulative frequency of the categories and answers the
question, "How much of the total is accounted for by each category."

o a
a>

QC

E a>
n
o

a>

E
z

I 7^^>—: " : i -
100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
CUB (5050) MDS (5054) AFORMS (5052) LOGMOD B (5040)

Component

Figure 4-9. Pareto Analysis of Problem Reports

(0
c
0) u
I-
0)
Q.

>
a
3
E
3
Ü

123

Defect Profile Determination

To construct a defect profile, each problem report was categorized in one of the five
defect types of the CRC defect model (computational, data, interface, logic, and other)
based on the information recorded in the report. The results are shown in the pareto
diagram in Figure 4-10. The implication of this profile for certification is as follows: the
large percentage of logic errors suggests that testing should be part of the certification
process.

The large portion of defects in the "other" category suggests that the categorization
scheme could be improved for this organization. The "other" category should be
examined for natural groupings and another defect type or types should be created. For
example, reports of type "other" may be associated with non-software problems, and
thus perhaps should be excluded from analyses.

Logic Other Data Interface Computational

Error Category

Figure 4-10. Error Category Pareto Analysis

By breaking the defect profile down by system (component groups) as shown in Figure
4-11, we can see that the profile (i.e., the proportion of each defect type) varies by
system. Because the other systems have significantly less reports than the CUB
components, there is insufficient data to construct system-specific profiles. Therefore,
the overall profile shown in Figure 4-10 is the best characterization of the components
as a whole.

124

V)
C
o a a>

DC
E

JÜ
n
o

a>
n
E 2

z

pf| CUB P| MDS ■ AFORMS F|] -OGMOD B

Logic uata interlace Uther

Error Category

Figure 4-11. Distribution of Error Categories

Effort Profile Determination

Rework effort for each problem report includes the effort to analyze the report plus the
actual hours to repair it. Not all reports have reported effort data. Figures 4-12 and 4-
13 show the portion of problem reports that have effort data.

Q.
a>

1-
n
O 15

10
a> a
E
3

I I 'Jot Recorded

r""| Recorded

CUB MDS AFORMS

Component

Figure 4-12. Recording of Analysis Hours

LOQMOD B

125

</>
*-> 25

o
|~| Not Recorded a.

a>
DC 20 |^| Recorded

b
a>
.Q 15 o ^
a.
o 10

a>
E 5
3
z

0 I 1
:UB MDS AFORMS

Component

Figure 4-13. Recording of Actual Hours

LOGMOD B

Because the CUB components problem reports was the largest group and also had the
largest portion of effort data reported, the rework effort analysis was limited to the CUB
component problem reports. The effort data was plotted in a histogram showing the
number of reports with recorded values in the range (or interval) shown on the x-axis.
For example, Figure 4-14 indicates that 8 reports had analysis effort of less than or equal
to one hour. Figure 4-15 shows a histogram of the actual hours effort data. However,
since this analysis is based on approximately 20 problem reports, it is not expected to be
an accurate predictor of rework effort for future problem reports. The sample size is
also too small to compute an average rework effort for each defect type. A more
complete set of effort data is required; this analysis should be repeated after all of the
problem reports have been resolved.

126

8

V) 7
4-»
1_
o
a e
a>

CC
E 5

a>
n 4 o
°- 3

t 'S
a> z
.a
E
3 l z

8

<1 1-2 2-10 10-20 20-100 > 100

Analysis Hour Intervals

Figure 4-14. Analysis Hours for CUB Components

« 7

o

DC

E 5
(1)

o «
OL

•s 3

<" 2
.Q 2

E
z1

o

The effort values
rework estimatic
hours for an inte
compute the con
method provide

<1 1-2 2-10 10-20 20-100 > 100

Actual Hours Intervals

Figure 4-15. Actual Hours for CUB Components

> in the histograms of Figures 4-14 and 4-15 can be convertec
MI value using the method shown in Table 4-1. The average
rval is multiplied by the proportion of reports in that intervc
tribution of that group of reports to the estimated average v
s a better estimate than a simple average calculation. If mon

127

into an
number of
ilto
alue. This
2 complete

effort data becomes available, this computation can be repeated to derive a more
accurate prediction.

Table 4-1. Estimating Rework Effort from Figures 4-14 and 4-15

Average Hrs
in Interval

Proportion of
Reports

Contribution

Analysis Hours

0.5 x8/17 = 4.0

1.5 x3/17 = 0.3

6 x3/17 = 1.1

15 xl/17 = 0.9

60 x2/17 = 7.1

100 xO/17

Est. Average

= 0.0

= 13.4

Actual Hours

0.5 x7/17 = 0.2

1.5 x2/17 = 0.2

6 x5/17 = 1.8

15 x2/17 = 1.8

60 xO/17 = 0.0

100 xl/17

Est. Average

= 5.9

= 9.9

Total Estimate = 13.4 + 9.9 = 22.3 hrs

Other Observations

In addition to the above analyses aimed at generating custom defect and effort profiles,
the following analyses were also performed to further characterize the set of problem
reports.

• Severity analysis

• Category analysis.

The pareto diagram in Figure 4-16 shows the distribution of the severity classifications
of the problem reports. Critical and Significant problems account for more than half of
the problems, which is not typical of severity distributions for software that has been
fielded. Generally, one would expect these severity categories to be a smaller
proportion of the total.

128

Significant Critical Workaround Nice-to- Workaround, Blank
Have No Impact

Severity

Figure 4-16. Severity Pareto Analysis

By looking at the breakdown by system in Figure 4-17, we find that the CUB
components are principal source of critical and significant errors. Rather than
indicating relative quality of the components, this may indicate that the CUB
components have been more heavily used and/or tested.

12

(0

a
a>
cc
E 8

n
E
3
z

QcUB \U MDS ^AFORMS fj LOGMOD B

Significant Workaround Worki Critical Significant Workaround Workaround, Nice-to-
No Impact Have

Severity Category

Figure 4-17. Distribution of Severity Categories

As Figure 4-18 shows, software problems are by far the most prominent category (or
source) of problems. This is a typical pattern.

129

35 100%

S 30
a
Q>

CC 25

90%

0)
80% Q)

70% ■£

E

o

o
60% Ü

50% Q.

Q. 15

«*-
o
i- 10

n
E ,

i- ■■ -1

0)
40% .>

(0
30% —

20% E

o 3 °
z 10%

I I '""" t 0%
Software Other Document/ Document/ Document/ Document

Software Software/ Other
Other

Problem Category

Figure 4-18. Problem Category Pareto Analysis

Analysis Summary

We were able to construct a custom defect profile for these components as shown in
Figure 4-11. However, the set of problem reports with recorded effort data is too small
to construct a rework effort profile. The pilot site may choose to repeat the analysis
after the problem reports have been resolved and effort reported.

4.2 Certification Framework's Applicability to Commercial Organizations

In an effort to expand the Certification Framework's applicability to commercial
organizations, SPS performed the following two tasks:

• Supported industry standards efforts in reuse and certification through the Reuse
Interoperability Group (RIG)

• Conducted a survey of commercial organizations to determine how reuse and
certification is being applied

The results of both of these tasks are discussed in the subsections that follow.

4.2.1 Commercial Standards Organizations-RIG

Advanced thinking on the part of the Advanced Research Projects Agency (ARPA),
STARS, and the U.S. Air Force Reusable Ada Avionics Software Packages (RAASP) led
to the creation of the Reuse Interoperability Group (RIG) in 1991. Participants in the

130

RIG represent several commercial organizations (e.g., Raytheon, MCI, Morgan Stanley,
and NASA) who potentially adopt the RIG's work products.

As part of the RIG, its Technical Committee 4 (TC4) is one of the few groups addressing
reuse and certification standardization and operational policies. It was supported by
CRC and ATD to increase our awareness of the group's activities, as well as document
their charter and progress. Observations during our participation in the TC4 confirms
our evaluation of the state-of-the-art of reuse and certification and has helped to flavor
our projects' efforts. Participation in activities such as these provided an opportunity to
direct and guide the maturation of reuse and certification standardization.

The TC4 identified areas where standards for asset evaluation and certification will
promote reuse library interoperability. The RIG standards are created using procedures
defined by the Institute of Electrical and Electronics Engineers (IEEE). These standards
serve as policies for industry rather than providing guidance for internal certification
processes.

The working group submitted 3 standards to IEEE for ballot. These are the P1420.2
Basic Interoperability for Data Models for Reuse Libraries, the P1420.1a Asset
Certification Framework, and the P1430 Concept of Operations for Interoperating Reuse
Libraries. Currently, P1420.1a, Asset Certification Framework has been accepted by
IEEE as a standard and can be ordered from that agency.

Through our participation in the TC4, the CRC and ATD efforts have influenced the
group's work products and coordinated our projects' approaches. The TC4's mission is
at a higher level of abstraction with a broader context; the CRC Certification Framework
can provide a more detailed view of the issues in reuse and certification. Support by
CRC and ATD helped us stay abreast of the TC4's activities, augment their knowledge
and continue to influence development in the areas of reuse and certification.

4.2.2 Survey of Commercial Organizations

The purpose of surveying commercial organizations was to determine how certification
is being applied. Our goal was to identify their reuse methods and the need for
certification in the reuse process. The survey used an interview approach similar to that
for the selected pilot site organizations in the Rome Laboratory Certification of Reusable
Software Components project.

Candidates to survey were supplied internally by SPS. In pursuing reuse as a corporate
business thrust, SPS has interacted directly with more than 700 companies, government
organizations, and educational institutions interested in software reuse. Many of these
interactions are documented within SPS' Telemarketing Database. This database was
the primary source of candidates to interview as a survey of commercial organizations.

The objectives of the interview were to gather the following information:

What kind of certification process is being used?

What are the reuse goals?

Is any part of the certification process automated?

Where, in the software life cycle, is certification being performed?

Who is doing the certification?

What is the source of the assets to be certified?

To what extent is certification being performed?

How is the certification information relayed to the reusers?

Who are the users of the certified assets?

What incentive exists for the asset developer to develop reusable assets?

Will certification increase the incentive for reusing assets?

Does the participant perceive a benefit from asset certification?

Would certification appeal to the reuser?

What incentive exists for the reuser to reuse assets (i.e., does certification play a
role)?

Using the SPS proprietary Telemarketing Database, we identified thirty organizations to
interview which were actively performing reuse. Limiting our number of organizations
to thirty provided us a statistically sound survey results and placed a reasonable limit
on the survey effort.

Several types of survey techniques were investigated for gathering the needed
information (i.e., telephone survey, mail surveys, on-site surveys, etc.). We chose
telephone surveys since this technique promised the most cost-effective and highest rate
of return. Mail surveys and on-site surveys proved unnecessary since telephone
surveys provided adequate information. As an incentive for our survey participants,
we offered to provide the results of our survey.

The survey process consisted of the following five phases as shown in Figure 4-19.

1. Prepare the Survey Material

2. Identify the Survey Participants

3. Perform the Survey

4. Analyze the Survey Data

5. Document Results

132

Candidate
Sources

Candidate
Identification

Perform
On-Site
Information;
Collecting j

Consider On-Site
Trips

Mail
Surveys

Initial
Data
Analysis

A Generate
Reports
And ITR

Final
Data
Analysis Present Findings

Figure 4-19. Survey Process

The data collected from each of the telephone surveys is captured in Appendix C -
Survey Data. The following discussion summarizes our survey results.

During the survey, we interviewed, or attempted to interview, a total of 33 people.
Seven people could not be contacted, and three refused to discuss any information
about the reuse activities of their company. These participants were from a wide range
of companies (e.g., DoD contractors, banks, credit institutions, and universities). All of
the participants were project leaders or higher rank in their companies. This was due to
the nature of SPS' Telemarketing Database since it is composed of people who are
responsible for purchasing software for their group or company.

Nearly all of the participants were willing to provide information about their reuse
efforts. Those that were hesitant became willing after they were informed of the intent
and confidentiality of the survey.

Upon interviewing these individuals, it was observed that reuse was performed at an
informal level. Twelve companies were in the process of establishing reuse systems or
expanding systems already in use. Of these, a few were designing a very detailed reuse
process as well as asset repositories that would store substantial asset information.

133

Of the fifteen participants performing reuse, or initiating a reuse system, nine had
positive feedback towards asset certification. Participants in companies that were in the
process of establishing elaborate reuse systems stated that they would not use a non-
certified asset. Two contacts stated that an asset would not be considered reusable
unless it was certified. Seven contacts were actively doing a level of asset certification.

Five contacts did not think that certification was a reuse issue although most of the five
did think that certification was beneficial.

Nine of the seventeen contacts that were performing reuse stated that certification was a
reuse incentive. Six did not think that certification was an incentive for reuse. These six
had other priorities, such as understanding the asset and accessing the asset.

Overall, about 40% of our survey participants believed that certification was an
incentive to reuse. About 20% did not see certification as a reuse issue. The remaining
40% had not thought about the certification issue enough to be able to comfortably
respond to certification questions.

Based upon our overall survey results we believe that about 50% of commercial
companies are involved in reuse. While most of these companies are just starting to
reuse software, all have an informal reuse process in place.

This survey and its assessment, together with the State-of-the-Art Report on Reuse
Libraries in Appendix D, lead us to the following conclusions. We believe the future
reuse arena holds a place for certification tools; those contacts with well-defined reuse
goals stated that certification is necessary for reuse. While reuse is still immature in the
commercial market, it has supporters. Eighty-five percent of the survey participants are
in the process of advancing their reuse process. Only about 20% of the twenty-two
companies surveyed were associated with projects which did not require either reuse or
certification.

The current reuse market is not advanced enough to be able to determine the kinds of
certification tools that would aid in their reuse initiatives. Additional R&D is required
to determine the necessary tools.

As a potential follow-up, the interview participants could benefit by the use of
certification tools if the tools were perceived as a reuse aid. Such tools would enable
companies beginning their reuse programs to advance more rapidly.

4.3 Certification of Reusable Components (CRC) Web Pages

Under this effort, the Wordwide Web (WWW) pages for the CRC effort were completed
and were integrated with the automated demonstration developed by the subcontractor
GRCI. The objective of the web pages is to provide information about this research
initiative at to a wide audience. In addition, the web pages provide a convenient means
for interested persons to acquire a copy of the CRC document suite. These web pages
will be linked to the RL home page and hosted at the RL server.

134

The CRC web pages are written in hypertext markup language (HTML), which is the
standard for documents that are viewed with web browsers such as Netscape and
Microsoft's Internet Explorer. The automated demonstration is an interactive program
that illustrates one of the CRC cost/benefit models in action. This demonstration is a
Java applet, and requires a Java-enabled browser (such as Netscape 3.0 or Internet
Explorer 3.0) in order to execute.

The CRC welcome page, shown in Figure 4-20, is the first page that users will see. From
this page, all contents of the CRC pages can be accessed, and the user may also navigate
back to the RL home page by using the arrow button at the bottom of the page. At the
top is a frame containing the RL logo and three navigation buttons. This frame is
always visible for convenient navigation within the CRC web pages.

^offcwvco Components

*£M

Welcome to the Certißcation of Reusable Software
Components World Wide Web Pages

In January of 1994, Rome Laboratory began a thirty-month, exploratory development project entitled
"Certification of Reusable Software Components" (CRC). Under the CRC contract, a Certification
Framework (CF) for software components was developed which is sensitive to varying domains,
business strategies and asset types. A cost benefit plan, an operational concept, and a suite of certification
tools were defined. An automated demonstration of the Cost Benefit Model was also developed. A data
collection guide and procedures for a certification field trial were developed, an initial field trial was
conducted, and the results were analyzed and reported.

The aforementioned documents and the automated demo are available via these web pages.

For more information about Rome Laboratory's research program, contact Deborah Cerino at
cerinod@rl.af.mil,

View the Executive Summary
Download the CRC Documentation Suite
Run the automated Cost Benefit Model Demo. You will need a
java-enabled browser in order to run the demo,

C^k±l^mtogatotheRome£^itix3toTy-H^nefhge.

<f

Figure 4-20. CRC Welcome Page

135

On the welcome page, an email link to the RL contact Deborah Cerino is provided.
When the user clicks on this link, the browser automatically brings up a mail window
such as the one shown in Figure 4-21. Users desiring more information can easily
contact Ms. Cerino.

cerinod@rl.af.mil

Send New Quote Attach Address Stop

Karen Dyson <kdyson@sps.com>

Subject:

^7 Addressing Attachments

Mail To: ctrinod9rl.af.mil

Co:

Ix <>

1 it

01 10
B3

Figure 4-21. CRC Email Link

Upon selection of the Executive Summary link on the welcome page, the executive
summary is displayed in the bottom frame of the browser window, as shown in Figure
4-22.

136

Executive Summary

It has been estimated that the U.S. Department of Defense (DoD) spends in excess of $24 billion per year to develop and
maintain software for weapons, command and control, and other automated information systems. The increase in number

TJt^Z °i "ST t^T^u e.SySt^mS *?* l6d t0 risin8 S0ftWare devel°P™nt and maintenance costs. Consequently, the DoD
needs to identify methods that will accelerate development schedules, lower cost, and improve quality.

Software component reuse and certification are two technologies that have great potential to counteract the rising costs of
software development and maintenance. OaÜßctiüm. as defined in this and related documents, refers to a process by which
inspection, analysis, and testing techniques are used to achieve assurance of the quality of reusable assets. Certification is
expected to stimulate component reuse and reduce the amount of rework required. The certification process is performed by a
reuse repostfory, by a reuser, by an independent organization providing such services, orby a development organization.

As more and more organizations embark on software reuse programs, the need for a comprehensive and systematic approach
o ™mponent reuse and certification becomes essential. Organizations need guidance within their reuse programs to asLs
Sll n°n f Ü™* °f ^ reduction and cost «■*&»• Recognizing that software will not bereused unless its

quality can be accurately and effectively determined, Rome Laboratory (RL) of the United States Air Force Materiel Command
established a research program in reusable software asset certification. The goal of this technology thrust at RL was to make
certification usable, practical, and cost-effective.

In January of 1994, RL began a thirty-month, exploratory development project entitled "Certification of Reusable Software
Components (CRC). The pnme contractor for CRC was Software Productivity Solutions, Inc., with subcontractors from
General Research Corporation and VeriQuest, LLC.

Under the CRC contract, a Certification Framework (CF) for software components was developed which is sensitive to varying
domains business strategies and asset types. A cost benefit plan, an operational concept, and a suite of certification tools wire *
f fv, r* r"l ° demonstration of the Cost Benefit Model was developed and can be accessed on the World Wide Web

at trie CRC home page. A data collection guide and procedures for a certification field trial were developed, an initial field trial
was conduc ed and the results were analyzed and reported. Additional certification field trials are planned under separately

Figure 4-22. CRC Executive Summary Page

The user can also download PDF versions of the seven-volume CRC document suite by
clicking on the Download Documents link on the welcome page, or by clicking the
Documents button. The PDF format files are browsable and printable from Adobe
Acrobat Reader. The Acrobat Reader application is available at no charge from Adobe.
There is a link to the Adobe web site at the bottom of this page for users who wish to
download this application.

The seven downloadable documents are listed in a table (see Figure 4-23) along with a
brief description of their contents and a file size. When the user clicks on the link to a
file, the file is downloaded from the server to his local (client) computer.

137

Download the Documentation Suite

The documents in the Certification of Reusable Software Components (CRC) Documentation Suite are available for
download. The documents are in the Adobe Acrobat (.pdf) format. The lastest version of the Adobe Acrobat Reader may also
be downloaded as shown below.

[Volume 1 - Project Summary | Volume 1 describes the work performed and the results of the CRC project.

[Volume 2 - Certification
[Framework

[Volume 3 - Cost/Benefit Plan

Volume 4 - Operational
Concept Document

Volume 5 - Certification Field
Trial

Volume 2 describes the research conducted to develop the Certification
Framework.

Volume 3 describes a systematic approach to evaluating the costs and benefits
of applying certification technology in the context of a reuse program.

Volume 4 defines the operational concept of an automated certification
environment and reports the results of field interviews with potential users.

Volume 5 details the procedures, collection forms, results, and lessons
learned from the initial certification field trial performed by Software
Productivity Solutions, Inc.

Volume 6 - Certification
Toolset

Volume 7 - Code Defect
Model

Volume 6 identifies the requirements for certification tools and reports the
evaluation and selection of tools based on these requirements.

Volume 7 provides a model of code defects based on empirical data collected
from studies of industry projects.

15 MB

1.4 MB

663 KB

2.1MB

1.4 MB

12 MB

605 KB

Go the Adobe Systems webpsge togetjcmcopyof the Adobe Acrobat Readertyclk&ingon the followingbutton:

Set Acrobat: A.

o

«■■

Figure 4-23. CRC Document Download Page

If the user has Acrobat Reader installed and established as a helper application in his
browser, then Acrobat Reader will automatically be invoked upon completion of the
download. As shown in Figure 4-24, from Acrobat Reader, the user can browse the
entire document and can print a high-quality hardcopy on his own printer. Bookmarks
have been established for easy navigation throughout the document. These are shown
on the left-hand side of the Acrobat Reader window. At any time, the user may choose
to exit Acrobat Reader or place that window in the background and return to the
browser.

If the user has an Acrobat Reader plug-in configured to his browser, then Acrobat
Reader would instead be invoked within the bottom frame of the browser window. If
the user does not have Acrobat Reader installed, he may simply download the desired
files and browse them at a later time.

miflj^QJKllHhlHHll^NlD

D
D
D
D
D
Ü

^D

Abstract

Table of Contents

List of Figures

List of Tables

C ontri b ut ors t o t h e CRC Proj ect

1 Introduction

2 Cost/Benefit Model forCertification

D 2.1 Identification of Costs and Benefits

D 2.2 Discrete Model

D 2.2.1 Risk Reduction as aCost Avoidance

D 2.2.2ModelforCertification of anlndividua

D 2.2.3 Model forCertification of an Asset Ba

D 2.2.4ModelforCo3t-Effectivene3s of Certi

D 2.3 Certification Method Effectiveness by Erro

D 2.4 Continuous Model

D 2.5 Extensions to Basic Model

3 DataCollection Methods
D 3.1 Certification Data
D 3.2 Investment Data

D 3.3ReuseData
D 3.4 Data Collection Data
D 3.5 Field Trial Data

D 3.5.1 Product Characteristics
□ 3.5.2 Certifier Profile

D 3.5.3 Process Execution

D 3.5.4 Certification Defect Profile

4 Data Analysis Ap proac h

D 4.1 Parameterization of Models
D 4.2 Selection of Tools and Methods

D 4.3 Cost/Benefit of Certification

D 4.4 Field Trials

D 4.5 Evaluation of Models and Data Collection

5 Summary

6 References

Appendix A: Survey of Costf Benefit Model3forSc

OKI Tolm» 3-GsWfr"&Hn

^ .«->-■■ "••

Aou if tf l^Mdt

Fijuie 2-2. Cexti&atün&Elc Reduction

Concussently the mcxeased eaahty that x psychologically associated with a cgrtfied
asset males itmoxe attmctive to potential senses. Thus, the Le9elof sense s hies/
to increase, inaddition to me seduction of sisk aliezdy descxitied as a he JK lit of
certification. Easlyxesult; fxom me DI5A Reuse xuetcicE Psogxam [CHIW 3] support
thi hypothesis. Repository xepoits shovTed that mole highly cexufied assets wie
moxe liVely to lie extracted foi potentnl tease [R ATP4],

While xik ail seadüy he con? eife d into a ost av oddance, the marketing benefit of
aextiucatkm is hajdex to quantify. Consequently, the cost/benefit modelpioposed m
thi plan deals only with sill seduction.

]£ost tense programs currently use a sysfc m of discrete hieiaxchi3l le? els to xeport
the xesnhs of cesufication. Thi <r>st/benefit plan proposes a dkaete modelas well
as the moie general continuous form.

22 Discrete Model

The devebpmentof a oexufiaxtionCOSVheueÄt model begins vrith an examination
of the saisLzio in which an mdir idnalassetis sensed. Let us assume that some
quality factoi exists which is coiielated nith the oost ox effoxt to xeuse an asset. Then
a certnicatttnfxamewoxlf basedon that factoi may help to seduce me xisli of sense.
The risk of xense is the potentklfoi adverse consequences, such as unanticipated
xewoxk. Erexy time the cextified asset is reused,a benefit m terms of seduced x&lc
wiUbe realised.

in
o

D 17 of 64 <^70S8 T\ I 8.50 x 11.00 in Q

Figure 4-24. Adobe Acrobat Reader Window Showing CRC Volume 3 Document

Back on the welcome page, there is a link to the Demonstration. By clicking this link, or
the Demo button, the demonstration page will be displayed as shown in Figure 4-25. If
the user does not have a Java-enabled browser, the Run Demo button will not be
shown. In this case, the user may download an Excel spreadsheet version of the
demonstration to run on his local computer. The user can also download a compressed
file containing the Java source code.

139

^OLVW.TLC Cornonnenr.s

155

Cost Benefit Model Demonstration

This page contains a demonstration of the CRC Cost Benefit Model for selection of verification techniques. Click
on the button below activate the demonstration. You will need a Java-enabled browser to run this applet. In the
demo window, use the slider bars at the top to change the values and observe the changes to the cost benefit
graph.

Run Demo

The following files are available to download:

^ Demo Source

^ Download Excel Spreadsheet - If you are working in a PC environment, save the file with a .xls file
extension. If you are working in a Macintosh environment, the file should be decompressed using Stuffit
Expander (this maybe performed automatically, depending on your system configuration).

mm\ ^? je

Figure 4-25. CRC Demonstration Page

When the user clicks the Run Demo button, the server will download the applet to the
client computer and the browser will control its execution. The Java applet will start
and a new window will open as shown in Figure 4-26. There are three input variables
at the top of the window that the user may modify by moving the slider bars: defect
density, rework effort per defect, and labor cost. As these values are changed, the
values in the tables will be recalculated and the graph redrawn.

The purpose of this demonstration is to illustrate the CRC cost/benefit analysis of
verification techniques based on the aggregate defect model discussed in more detail in
section 4.3.1. Five techniques are shown: Error & Anomaly Analysis (EA), Code
Review (CR), Functional Testing (FT), Branch Coverage Testing (BC), and Random
Testing (RT). The cost of a technique is the effort to apply it; investment costs such as
tool purchase cost and training effort are not considered in this analysis. The benefit of
a technique is the cost of rework avoided based on the technique's effectiveness at
detecting defects. Technique application cost and effectiveness data is taken from
[MCC92].

140

Techniques are applied in order from the most cost-effective to the least cost-effective.
Cost effectiveness is calculated as (average) cost per defect found per thousand lines of
code. The cumulative combined effectiveness is shown in the lower table.

As the user modifies the input values of defect density or rework effort, the break even
point of cost/benefit graph (where the two curves intersect) will move. The break even
point represents the benefit equal to the cost incurred. Beyond this point, to the right,
the cost exceeds the benefit. When finished, the user can exit the applet by closing the
window or clicking the OK button at the bottom of the window. At this point he is
returned to the CRC demonstration page in the browser.

IQllPiii imm=mmmmmm- piM cost Benefit Model Demonstration
DefectDensJ>|7 j)efectiKSLOC Revo* Elf ort]40 he

ssofindMdual Yerific

wsTOefeet UtwCost],0(l |&Hour

>\ ■ 1 I'M 1*1 I 1 1*1 IOI 1 1 1*1
Cost Effecövene. ation Techniques

Technique Rank Effectiveness Rework Effort Co3t Effectiveness

EA 1 32 8960 21 2100 937

CR 2 50 14000 45 4500 1286

FT 3 60 16800 214 21400 5095

BC 4 25 7000 272 27200 15543

RT 5 19 5320 250 25000 18797

CumutottveCost BeneR of Combined ¥e«cation Techniques

Technique Order Effectiveness Benefit Effort Cost Saved

EA 1 32 8960 21 2100 90

CR 2 66 18480 66 6600 185

FT 3 86 24192 280 28000 242

BC 4 90 25144 552 55200 251

RT 5 92 25687 802 80200 257

x10' 80

60

40

20

1

Cumulative CosWBeneft Graph

Cumulative Beneft
-Cumulative Cost

-■ ■ " " .^

1 1
2 3

TechniqueOr
4

der
5

CD
*/A Unsigned Java A ppl«t Vtodow ,.,. raa

Figure 4-26. CRC Demonstration Applet Window.

141

4.3.1 Cost/Benefit Model for Aggregate Defects

This section describes the cost/benefit model for selection of certification (or
verification) techniques based on an aggregate defect model. This is a revision to the
original cost/benefit model described in the CRC Volume 3 Cost/Benefit Plan in section
2.3 of that document. This revised model differs from the original model in that it
eliminates the defect profile that characterizes defects by types (i.e., Computational,
Data, Interface, Logic and Other). Instead, this revised model considers just aggregate
defects, or total defects of all types.

The original cost/benefit model for technique selection was based on the premise that
by breaking the defects down into types we would be better able to select the most cost-
effective techniques. This premise includes two major assumptions as follows:

• A profile of expected defect types can be constructed from historical data

• The effectiveness of certification techniques at detecting defects of the different
types is known.

Research was conducted on the CRC effort to establish the best available data from
published studies to support the above two assumptions, and this was documented in
CRC Volume 5 Code Defect Model. The data was applied to an Excel spreadsheet
version of the model to rank the techniques in order of cost-effectiveness when applied
in sequence, as would be the case in a multi-step certification process.

The model used the following algorithm:

1. Rank the techniques in order of their individual cost-effectiveness, where cost-
effectiveness is calculated as the average cost per defect found per 1000 lines of
code.

2. Apply the most cost-effective technique (from step 1) first, calculating the cost to
apply and the benefit in terms of rework avoided.

3. Re-compute the defect profile after having applied the previous technique, and
re-rank the remaining techniques by cost-effectiveness.

4. Apply the most cost-effective of the remaining techniques, calculating the
cumulative cost to apply and cumulative benefit. Cumulative cost is calculated
as the sum of the cost to apply the individual techniques. Cumulative
effectiveness is equal to the sum of the cumulative effectiveness of the prior
step's techniques plus the effectiveness of this step's minus the product of these
two values.

5. Repeat steps 3 and 4 until all techniques have been applied (i.e., ranked).

Using this algorithm on the available data resulted in a ranking of techniques that was
the same as the McCall study of technique effectiveness [MCC92] which did not break

142

defects down by type. Thus the defect type breakdown did not add any value. We
postulate that is because the differences labor costs (effort to apply) far outweigh the
differences in effectiveness among the techniques considered. For example, automated
static analysis is by far the least labor-intensive, and testing techniques are the most
labor-intensive.

One could imagine a case with an atypical defect profile, such as a profile that is heavily
skewed toward one particular type of defect, where the above model would perhaps
lead to a different ranking of techniques. But for a typical defect profile, the added
complexity of the above model is not needed.

Thus we collapsed the defect profile by types into an aggregate defect density for the
revised cost/benefit model which is illustrated in the automated demonstration. The
same basic algorithm applies, except that it is no longer necessary to recompute the
ranking of remaining techniques after having applied a technique, since the application
of a technique no longer impacts the profile of defects remaining.

Research by George Stark of the MITRE corporation reported in [STA96] suggests that
the CRC defect categorization (Computation, Data, Interface, Logic and Other) may not
be the most effective breakdown for explaining the difference in rework cost per defect.
When the rework cost per defect category varies by an order of magnitude or more,
then the categorization scheme is an effective discriminator. For example, if defects of
Type A require 10 times more effort to repair than other types, a cost/benefit analysis
would clearly favor techniques targeted at Type A defects. Likewise, a process
improvement initiative would be targeted to prevention of Type A defects.

143/144

5.0 Conclusions

This section presents our conclusions resulting from the Certification Framework
Validation for Reusable Assets effort documented in this Final Technical Report.
Section 5.1 contains a summary of the project. Section 5.2 contains the lessons learned
as a result of this effort. The final section, Section 5.3, presents ideas for future research
identified as a result of this effort.

5.1 Project Summary

This FTR provides a comprehensive, cumulative, and substantive summary of the
progress and significant accomplishments achieved on the project titled "Certification
Framework Validation for Reusable Assets." The efforts of the ATD project advanced
reuse and certification technologies, as well as the state of the art in software
certification framework validation. These advances are identified in Figure 5-1 and
show how each was built upon the accomplishments of the previous CRC project.

CRC ATD

SQF Reeraineering
CF

Reuse Research

PSM PE WG
Planned Guidebook for PSM PE

^ftS" «v Correctness and Portability
r *V~ Research ^

Certification Framework
Code Defect Model

Survey of Certification Tools
Certification Process ^

ijjpta Collection Plan/Procedura#^
Field Trial #1 Jr

•.**<%,
Field Trial #2

ACE Prototype
Operational Concept

™Kzi

Cost Benefit of Reuse
on WWW **#

CRC Volumes 1-7 CRC Home Page

• c-r-'imam

RIG
IEEE 1420.1a

Certification Standard

Figure 5-1. The Results of the ATD Project Built Upon the Accomplishments of CRC.

145

Even though we found that reuse and certification are still relatively immature in
industry practice, the ATD project demonstrated tangible work products. The work
products together with the lessons learned described in the subsection that follows
provide a sound foundation for future research topics.

The two main objectives established for this effort were achieved as a result of the tasks
performed. The two main objectives were as follows:

1. Upgrade and expand the application of the RL Software Quality Framework
(SQF).

2. Further develop, apply and validate the RL Certification Framework (CF)
initially developed under the CRC contract.

First Objective

To address the first objective, we identified needed SQF framework upgrades, and
developed a re-engineering approach. The following aspects of the framework were
redesigned:

• Framework structural hierarchy—splitting the measurement portion of the
framework away from the guidance

• Streamlined the tailoring approach from factor selection to implementation of
quality assessment

• Application guidance—recommending that the SQF inspections be merged into
the existing software development process rather than a set of stand-alone
activities

We also extracted the following useful techniques from the SQF applicable to reuse
certification:

• Guidelines for building correctness into reusable assets

• Ada and C++ code inspection checklists

• Automated Ada style guideline checks

• Complexity measures for a defect prediction model

The code inspection checklists and automated Ada style guideline checks were
validated by use in the certification field trials. The complexity measures were found to
be effective at predicting different defect types by MITRE's model calibration task.

Second Objective

To address the second objective, we conducted research into commercial organizations
and reuse libraries in parallel with the CRC contract in order to provide timely feedback

146

to the development of the Certification Framework (CF) and the certification process.
Our conclusion is that the CF technology is significantly ahead of the state-of-the-
practice of organizations that are involved in reuse.

In analyzing the BLSMI problem reports we confirmed that defect data that is collected
for Air Force MIS systems can be used to generate a defect profile for the CRC
cost/benefit model.

We also performed a second certification field trial for a C++ asset. The first field trial
was performed with an Ada asset, but C++ is more commonly used in commercial
organizations than is Ada. An entirely new set of certification tools had to be selected
for C++.

We consider that the second field trial was a success, as was the first field trial. After
completion of both field trials, we determined the following findings:

• Certification process is repeatable.

• Certification process is understandable by other Certifiers.

• The effort required to perform the Certification process for C++ code
components is similar to the effort required for Ada code components.

• Tools are available for C++ certification that provide roughly the same
capabilities as for Ada.

We also created the CRC web pages including an interactive demonstration of the CRC
cost/benefit model for verification technique selection. These pages enhance
technology transfer by making the CRC technologies visible and accessible to both
researchers and practitioners.

5.2 Lessons Learned

Many valuable lessons were learned in the course of this effort. This section presents
the lessons learned in three categories: SQF, field trials & certification process, and pilot
sites.

5.2.1 SQF-Related Lessons Learned

The guidelines approach used to re-engineer the SQF was found to provide significant
added value by incorporating a "quality blueprint", or guidance on how to build
quality into software, into the framework. This added guidance rounds out the
information contained in the SQF and transforms it into a more complete quality
approach. We believe that extending this work by developing guidance for all of the
SQF quality factors would be a very worthwhile contribution to software product
engineering.

147

In performing the research to develop guidelines for the quality factor Portability, we
were surprised by the lack of a complete approaches and generalized guidance, even in
textbooks titled "Portability". For many quality factors, there is little available in the
way of guidance, and what is available is scattered throughout many sources rather
than collated into a coherent whole.

Another omission is in the availability of guidance for writing requirements, especially
quantitative specifications, for software quality factors. For example, how does one
specify a level of maintainability? How much is required for a given situation? A
similar need is the capability to estimate the feasibility of achieving such requirements.
This capability is essential in performing the trade-offs between functional and quality
requirements. For example, how much effort will be required to construct a system
with a reliability of 10"9? Cost estimation models that incorporate these quality
requirements are needed.

5.2.2 Certification Process and Field Trial Lessons Learned

The following section summarizes the lessons learned from the certification process and
field trial. Additional details are found in section 4.1.1 of this document.

With regard to the choice of the component language, we found that the C++ language
is not standardized. Even though the software industry has two C++ standards, many
other flavors exist. This presents challenges in application and interoperability of
certification tools. These factors have a significant effect on the reusability of a C++
asset because they impact maintainability and portability.

With regard to the defect categories in the CRC defect model, we found them difficult to
assign from the definition alone. The defect model and the field trial procedures could
be improved by elaborating the definitions and providing examples.

With regard to the testing effort, we found that the design of the component under test
greatly affects the effort required to test and the ability to successfully perform
maximum branch coverage during structural testing.

With regard to the configuration of the certification environment, we found this activity
was time-consuming and fraught with obstacles. The effort to install, learn, integrate,
and apply tools to a particular component should not be underestimated. Vendor
training and responsive technical support are requirements for high-end testing tools.

With regard to the code inspection checklists, we found that the checklists must be
customized to the implementation language of the source code under inspection. There
are many differences between languages, subtle and not so subtle, that are potential
sources of errors. One main category of such differences is portability considerations,
which tend to be very language-specific. Another category is coding style; each
language seems to acquire its own style.

148

Code inspection checklists must also be customized to an individual project or
development organization to enforce local practice or design decisions. For example,
one project may declare that all file I/O must be done through a specific file I/O
package to ensure consistency. In certification of reusable components, such
customization is not an issue because an asset is generally certified in a non-project-
specific context. It is important to recognize these customizations, however, when
developing a generic checklist from example checklists.

Code inspection requires personnel knowledgeable in the implementation language as
well as in the application area. Past studies of the effectiveness of the inspection
technique have shown that an inspector's experience is the greatest variable in the
effectiveness of the technique. This means that it is difficult to achieve uniform,
consistent effectiveness with this technique. We conclude that by off-loading as much
as possible of the inspection checklist into static analysis tools, the overall effectiveness
would be increased.

Despite the many tools currently available, there are numerous potential target areas for
static analysis still to be exploited. Often the very areas where automated tools excel are
the tedious, and thus error prone, inspection items that are difficult for the human
inspector to analyze in an effective and repeatable fashion. For example, there is no
excuse for requiring a human inspector to deal with coding style checks. Checks for the
use of non-portable or non-standard language features are also prime areas for
automation.

5.2.3 Pilot Sites Lessons Learned

Our field trials have demonstrated that a certification process that does not include
inspection and testing is not effective at finding defects. Yet this type of certification
process requires experienced personnel, as well as a significant amount of time and
effort. In consulting with the Air Force Reuse Center personnel at Maxwell AFB Gunter
Annex, we found that this level of investment in certification is beyond the scope of
what most reuse repositories are able to support because it just does not fit with their
business model. Their approach, which emphasizes automated tools, is roughly
equivalent to steps 1 and 2 (compilation and static analysis) of our certification process.

The commercial pilot site at Underwriters' Laboratory (UL) intends to act as a third-
party certifier of devices that include a significant amount of software, or in which
software is critical to safe operation. In their business model, their certification service
would be funded by the product vendors. UL has reached the conclusion that UL itself
would not be performing a certification process such as the process developed on the
CRC contract. Instead, their role would be to ensure that the software developers are
following appropriate standards and are using techniques that assure the required level
of software quality.

149

From UL's perspective, two aspects of the certification research are of primary interest:
the quantification of the effectiveness of verification techniques and the mapping of
required effectiveness to specific types of software applications/domains. Thus we
conclude that these are viable areas for further research.

5.3 Future Research

The lessons learned discussed above provide a direction for future research. For
example, the following topics show promise as critical areas for additional research and
merit additional funding:

• Develop cost estimation model including SQF quality factors

• Complete re-engineering of SQF for all quality factors

• Improve CRC defect model so that defect categories are better related to rework
effort

• Develop additional static analysis tools for cost-effective code inspection,
especially for Portability concerns

• Investigate tools and methods to improve code inspection effectiveness, such as
by improving code comprehension

• Continue Certification Framework research focused on needs expressed by UL
(i.e.,mapping CF to standards, and quantitative technique effectiveness
information)

• Develop a Verification Technique Testbed consisting of well documented "bad
code" benchmarks with known defects; this would be useful for tool evaluation
and testing, research into development of new or improved techniques, and
quantifying technique effectiveness

Since reuse and certification has proved to be a more challenging technology that
originally thought by the software industry, we recommend that future research be
couched in the context of product engineering and software process improvement.
Product engineering and process improvement certainly includes reuse and
certification, but also encompasses other critical technologies as well. We feel that the
products generated from this modified direction can be applied to a wider audience in
the context of product engineering and software process improvement. The DoD, as
well as commercial companies, are in great need of advancements in these technologies
to achieve a competitive advantage in today's demanding markets.

150

References

[BAL92] Baldwin, John T. "An Abbreviated C++ Code Inspection Checklist." October 27,
1992. http: //www.ics.hawaii.edu/~johnson/FTR/Bib/Baldwin92.html.

[BEA94] Beaulieu, M.F. and Fischer, L.P. "How to successfully identify defects during an
inspection." Proceedings ofSTC '94, April 1994.

[BOE81] Boehm, Barry W., Software Engineering Economics, Prentice-Hall, Inc., 1981.

[BOE88] Boehm, Barry W., "A Spiral Model of Software Development and Enhancement",
IEEE Computer, May 1988.

[BOW85] Bowen, T. P., et. al. "Specification of Software Quality Attributes". Technical
Report RADC-TR-85-37, Rome Laboratory, February 1985.

[DST96] "C Code Review Checklist."
http://dstc.qut.edu.au/~baker/www/sqg/C_Checklist.html.

[DUN84] Dunn, R.H. Software Defect Removal. McGraw-Hill, New York, 1984.

[DYS91A] Dyson, Karen A. "Quality Evaluation System (QUES)", Final Technical Report for
Rome Laboratory, RL-TR-91-407, Volume II, NTIS AD-A2523-976, December 1991.

[DYS91B] Dyson, Karen A. "Quality Evaluation System (QUES)", Final Technical Report for
Rome Laboratory, RL-TR-91-407, Volume I, NTIS AD-A2523-679, December 1991.

[EBE94] Ebenau, R.G. and Strauss, S.H. Software Inspection Process. McGraw-Hill, New
York, 1994.

[FAG76] Fagan, M.E. "Design and code inspection to reduce errors in program
development." IBM Systems Journal, Vol. 15, No. 3,1976, pp. 182-211.

[FAG96] Fagan, Michael. "OLP Software Inspection." http://www-
ols.fnal.gov:8000/ols/www/inspection.html#focus.

[FAU94] Faure, John. "Draft Standards for C++ Usage." Internal corporate software
development standard for Software Productivity Solutions, Inc. September 8,1994.

[GER95] Gerisch, Margaret. "Code Review Checklist."
http://www.oswego.edu/~more/html/checklist2.html.

[GRC95] GRC International, Inc., Using AdaQuest, Version 2.2, July 1995FAG76]

[HAM80] Hamlet, R.G. and R.M. Haralick, "Transportable Package Software", Software -
Practice and Experience 10 (1980), pp. 1009-1027.

[HEN88] Henderson,]., Software Portability, Gower Technical Press, 1988.

[HEN90] Henderson-Sellers, Brian, and Julian M. Edwards, "The Object-Oriented Systems
Life Cycle", Communications of the ACM,, Vol. 33, No. 9, September 1990.

[HUM95] Humphrey, Watts. A Discipline For Software Engineering. SEI Series in Software
Engineering. 1995.

151

[IEE91] IEEE Standard Glossary of Software Engineering Terminology, IEEE Std. 610.12-
1990, Feb. 1991.

[JLC96] Joint Logistics Commanders, Joint Group on Systems Engineering, Practical
Software Measurement: A Guide to Objective Program Insight. Version 2.1, March 27,
1996.

[KAN95] Kan, Stephen H., Metrics and Models in Software Engineering, Addison-Wesley
Publishing Company, 1995.

[KOE92] Koenig, Andrew. "Checklist for Class Authors." The C++journal. Volume 2. No.
1.1992.

[KOE95] Koenig, Andrew. "Working Paper for Draft Proposed International Standard for
Information System—Programming Language C++." Doc No. X3J16/95-0185
WG21/N0785. September 26,1995.

[LEC86] Lecarme, O. and M.P. Gart, Software Portability, 2nd ed., McGraw-Hill, 1986.

[LIN95] Linthicum, David, "Portability Pitfalls: Include Increased Cost, Potential
Dissatisfaction", Application Development Trends, May 1995.

[MAR83] Martin, James and Carma McClure, Software Maintenance: The Problem and Its
Solution, Prentice-Hall, 1983.

[MCC77] McCall, Jim A., et. al., "Factors in Software Quality", Final Technical Report,
RADC-TR-77-369, Rome Air Development Center, Griffiss AFB, New York,
November 1977.

[MCC82] McCracken, Daniel D. and Michael A. Jackson, "Life Cycle Concept Considered
Harmful", ACM SIGSOFT Software Engineering Notes, Vol. 7, No. 2, April 1982.

[MCC92] McCall, James A. et. al., "Software Reliability, Measurement and Testing",
Software Reliability and Test Integration, Final Technical Report RL-TR-92-52,
Vols. I & II, Rome Laboratory, April 1992.

[MCC96] McCabe, Thomas. "McCabe OO Tool." Presentation materials from On-Site
Tutorial. 1996.

[MOO90] Mooney, J.D., "Strategies for Supporting Application Portability", IEEE Computer,
Nov. 1990, pp. 59-70.

[M0093] Mooney, J.D., "Issues in the Specification and Measurement of Software
Portability", TR 93-6, URL: http://www.cs.wvu.edu/~jdm/
research/portability/reports/TR_93-6_ToC.html.

[NAS94] Angellatta, R. et. al. "Software Verification Plan for GCS," NASA Langley
Research Center, Hampton, VA, December 1994.

[ONE88] O'Neill, D. and Ingram, A.L. "Software Inspections Tutorial." In SEI Technical
Review, Software Engineering Institute, Pittsburgh, 1988.

[POT94] Potts, Stephen and Timothy S. Monk. Borland C++ By Example. Que Corporation.
ISBN: 1-56529-756-3. 1994.

152

[REI95] Reilly, John P. and Erran Carmel, "Does RAD Live Up to the Hype?, IEEE Software,
September, 1995.

[ROY70] Royce, W.W., "Managing the Development of Large Software Systems: Concepts
and Techniques", Proceedings WESCON, August 1970.

[SAI89] SAIC, CSI, Inc., and SPS, Inc., Quality Evaluation System (QUES) Quality
Framework Review, Interim Technical Report ,Volumes I-III, for Rome Laboratory,
F30602-88-C-0019, June 1989.

[SAX85] Saxena, S. and Field, J.A., "Portable Real-Time Software for 8-bit Microprocessors",
Software - Practice and Experience 15 (1985), pp. 227-303.

[SCH93] Scheper, Charlotte, et. al. "Certification of Reusable Software Components". Draft
Technical Report Prepared for Rome Laboratory, F30602-92-C-1058, January 1993.

[SKA94] Skazinski, Joseph, "Porting Ada: A Report from the Field", IEEE Computer, Oct.
1994.

[SOF95] Software Productivity Solutions, Inc. "Task Area: Software Quality Framework."
Interim Technical Report. Data & Analysis Center for Software, Subcontract No.
P48124 under Prime Contract No. F30602-92-C-0158. October, 1995.

[SOF96] Software Productivity Solutions, Inc. "Certification of Reusable Software
Components: Volume 5, Certification Field Trial." Contract No. F30602-94-C-0024.
United States Air Force, Rome Laboratory. Rome, NY. June 24,1996.

[SOM92] Sommerville, I., Software Engineering, 4th ed., Addison-Wesley, 1992.

[SPC95] Software Productivity Consortium, Ada 95 Quality and Style: Guidelines for
Professional Programmers, Version 01.00.10, October 1995.

[SPS94F] Software Productivity Solutions (SPS), Inc., Reuse Based Software Quality
Framework for Certification (RC-SQF), Final Technical Report for Rome
Laboratory, Prime Contract F30602-92-C-0158, Subcontract P48124, December 1994.

[SQF95] Software Quality Framework as Implemented in QUES Release 1.5, Software
Productivity Solutions, Inc., Indialantic, FL, February 1995.

[STA96] Stark, George. "Stark Reality", Measure Up! Newsletter, Software Productivity
Solutions, Inc., Volume 2 Number 4, October 1996.

[TH096] Thomas, William, "Predictive Models for Categorizing Error-Prone Software
Modules", Final Technical Report, MTR 96W0000071, The MITRE Corporation,
McLean, VA, September, 1996.

[VAN95] Ger van Diepen. "General C++ Coding Standard at the NFRA."
http://www.nfra.nl/~qvd/seg/CppStdDoc.html.

[WIC77] Wichmann, B. A., "Performance Considerations", Software Portability, Cambridge
University Press, Cambridge, England, 1977.

153/154

Acronyms

ACE

AFORMS

AFRC

ARPA

ASCII

ASIS

ATD

ATP

BC

BLSM

CASE

CCB

CF

COTS

CP

CR

CRADA

CRC

CRU

CS

CSC

CSCI

CSU

CUB

DARPA

DCF

DID

DISA

Automated Certification Environment

Air Force Operation Resource Management System

Air Force Reuse Center

Advanced Research Projects Agency

American Standard Code for Information Interchange

Ada Semantic Interface Specification

Advanced Technology Demonsration

Approved to Proceed

Branch Coverage Testing

Base Level Systems Modernization

Computer-Aided Software

Configuration Control Board

Certification Framework

Commercial-Off-the-Shelf

Completeness

Code Review

Cooperative Research and Development Agreement

Certification of Reusable Software Components

Computer Resource Utilization

Consistency

Computer Software Component

Computer Software Configuration Item

Computer Software Unit

Common Utilities and Bindings

Defense Advanced Research Project Agency

Data Collection Form

Data Item Description

Defense Information Systems Agency

155

DOD

EA

FT

FTR

GCSS-AF

GRCI

HTML

I/O

IDA

IEEE

ISO

IT

ITG

IV&V

KSLOC

LOGMOD-B

LUA

MDS

MTTR

NA

NASA/GSFC

NSA

NUWC

oo
OSD

PDF

PM

PSM

QA

QUES

R&D

Department of Defense

Error & Anomaly Analysis

Functional Testing

Final Technical Report

Global Combat Support Systems-Air Force

General Research Corporation International

Hypertext Markup Language

Input/Output

Institute for Defense Analysis

Institute of Electrical and Electronics Engineers

International Standards Organization

Information Technology

Independent Testing Group

Independent Verification & Validation

Thousand Source Lines of Code (non-blank, non-comment)

Logistics Module-Base Level

Library Unit Aggregation

Management Data System

Mean Time to Repair

Not Applicable

National Aeronautics & Space Agency Goddard Space Flight
Center

National Security Agency

Naval Undersea Warfare Center

Object-Oriented

Office of the Under Secretary of Defense

Portable Document Format

Program Management

Practical Software Measurement

Quality Assurance

Quality Evaluation System

Research and Development'

156

RAPID Reusable Ada Products for Information Systems Development

RAASP Reusable Ada Avionics Software Packages

RAD Rapid Application Development

RC-SQF Reuse-Based Software Quality Framework

RIG Reuse Library Interoperability Group

RL Rome Laboratory

SBIS Sustaining Base Information System

SEI Software Engineering Institute

SEL Software Engineering Laboratory

SLOC Source Lines of Code

SPC Software Productivity Consortium

SQF Software Quality Framework

SQT2 Software Quality Technology Transfer

STARS Software Technology for Adaptable, Reliable Systems

UL Underwriters' Laboratory

V&V Verification & Validation

VPI Virginia Polytechnic Institute

W.AVG Weighted Average

WG Working Group

WWW Worldwide Web

157

Appendix A - PSM Working Group Meeting Minutes

A-l/A-2

Practical Software Measurement
Software Product Engineering

Summary of Working Group Meeting of 20-21 August 1996

This Workshop had the following objectives:

(1) Define the scope and boundaries of SPE.

(2) Identify SPE issues supported by or related to measurement.

(3) Recognize intended user base for SPE measurement products.

(4) Clarify relationships between PSM SPE effort and other DoD and Industry
initiatives.

The following definition received consensus agreement as a working definition:

Within a project SPE comprises those software engineering activities used
to produce products that meet identified user needs.

Based upon the objectives, the participants discussed several topics and expressed
consensus on the following key questions:

Q: Should the SPE Measurement effort be pursued?

A: Yes.

Q: Should vendors be included?

A: Not by invitation, but participation remains open.

Q: Do we have software product engineers in the group? Are more needed?

A: Yes, we have people experienced in engineering of software products but

we could benefit by having more.

SPE, following the PSM Program Management measurement precedence, is based on
the rationale of issues-driven measurement; i.e. the questions of what
information is needed and why drive the decision as to how measurement is
to be done.

Consider Figure 1 below. While measurement needed for program managers
emphasizes Cost and Schedule, that needed for software product engineers
should focus on the Functionality and Quality of the software products (as
distinguished from the system products).

A-3

Cost

Performance

Quality

Figure 1

Estimation, prediction and assessment are all legitimate needs for measures
in SPE. Very important is the specification of quality in the requirements
to convey the concern much earlier than is typically the case now. (The
TQM emphasis on customer satisfaction, which can be made only after
considerable use, can bias the interest toward assessment only). Further,
the scope of the requirements for SPE should include system implications,
life cycle considerations and the scope of the "products."

The "customer base" for SPE can be categorized into three groups: Users
(operational users, sponsor, functional user, independent testers),
Developers (program manager, contractor's development manager, COTS
selector, system integrator, designers, SQA group, programmers, development
testers) and Maintainers (sustaining organization, in-service support
agent).

Scope and boundaries of SPE were identified based on extensive discussion:

Project context in which SPE is done.
Exclude services, training, etc. as important but ancillary to SPE.
Systems engineering defines requirements and constraints on SPE.
Tradeoffs occur at system level and at the software level; while the
former affect SPE the latter are fundamental to SPE.

Multiple users with different perspectives & informational needs,
f. Both activities (process) and products can be subjects for measure.

The IDEF-like Figure 2 illustrates the scope and boundaries emphasizing the

a.
b.
c.
d.

e.

A-4

iterative nature of the creative activities.

System
Constraints

Project
Constraints

Identified User
Needs

\ I /
Software
Product

Engineering

Accept? Software
Product

No

Figure 2

Functionality and quality are the initial attribute categories of interest for measurement
in SPE. Clearly, decisions in these areas affect Cost and Schedule, the two primary
categories for Program/Project Management. All four impact Performance. However,
we contend for now that we see no issue involving the software product that forces
considerations beyond functionality and quality.

The primary goal of the SPE Measurement effort is to develop and promote the
understanding of the relationships among the four elements: Cost, Schedule,
Functionality, and Quality. All contribute to the consequent determination of
Performance.

Individuals, organizations, documents, etc. that could contribute: PSM Program/Project
effort, Boehm (COCOMOII), SEI CMM, Personal CMM (Humphrey), Capers Jones'
Enterprise Model, Best Practices Effort, Malcolm Baldridge Criteria, ISO Standards
efforts, Function Points papers, Objectives/Principles/Attributes (Virginia Tech),
Quality Factors (Rome Labs), NASA SEL work, GQM (Basili and Rombach), SMERFS
(Farr), Design Metrics (Zage & Zage), Musa's Reliability Modeling, Gaffney's Defect
Modeling, McCabe's Complexity work.

The next PSM-PE meeting was planned for October 30,1996. The focus of the meeting
will be the identification of specific product engineering issues and a related
measurement framework.

A-5/A-6

Practical Software Measurement
Software Product Engineering

Summary of Working Group Meeting of 30 October 1996
Submitted on 6 November 1996

This Workshop had the following objectives:

(1) Review and discuss the results of the Workshop of 20-21 August 1996. These
results focused on a preliminary technical approach to the overall effort and
scoped and defined related issues.

(2) Identify the key software product engineering issues.

(3) Define a preliminary structure for categorizing the Software Product Engineering
Measurement issues.

A issue was defined as a concern or a area where problems may occur. The definition
of an issue should be consistent with PSM PM. The process for measurement
established in the PSM PM will be adopted for PSM SPE. For example, Cost and
Schedule can be considered as constraints upon Functionality and Quality. SPE shares
similar concerns with Program Management (i.e., recognize problems early, identify
and track risks, and satisfy constraints).

To help focus our discussion of issues, we revisited the concept diagram of PSM as
represented in Figure 1. For SPE, we are excluding items address by PSM PM in the
concept diagram.

Program jM WL Process
Management J f f ^ Improvement

Measurement Tools

Figure 1. The Concept of Practical Software Measurement

A-7

By using a nominal group technique (i.e., structured brainstorming), the participants
derived a list of issues and their meanings discussed. We used the following codes:

• F = Functionality

• Q = Quality

• A = Analysis/constraint

• P = Process

• B = Both Functionality and Quality

• T = Technical adequacy

Issues within a category or group should apply to all domains and methodologies. The
groupings should be reconcilable with PSM for the PM. It was decided to raise the
granularity of the grouping exercise and indicate if each issue is "in" = In the box of
SPE or "out" = Outside of the box of SPE. The results of all these exercises are listed
below.

Defect recognition - in (Q) (i.e., when inserted, found, fixed)

Feedback- out (P) (i.e., the necessity of feedback, during the development effort, to initiate process
changes, to describe quality now, to predict quality downstream)

Definition of quality - in (Q) (i.e., What do we mean by quality?)

Completeness - in (F) (i.e., in terms of functionality, is all expected functionality present?)

Cost effectiveness - out (A) (i.e., economical conformance to requirements [Deming])

Initial cost estimate - out (A) (i.e., cost of product)

Safety - in (B) (i.e., How safe is system, How safe is the software?)

Ease of use - in (Q) (i.e., How easy is it to use?)

Schedule - out (A) (i.e., planning and direction of schedule PSM PM)

Requirements Understandability - in (F) (i.e., Do two people build the same software from the same
requirements?)

Real Time Performance - m (A), (F) (i.e., how the software works at run-time)

Supportability- in (B) (i.e., after development, post-build, logistics, How easy is it to fix? Enhance?
Patch?)

Usability - in (i.e., ease of use)

Quality Flow Through - in (i.e., components from one system to another, from product-to-product,
from phase-to-phase, from requirements-to-documentation-to- system, What is the weakest link in
the chain?)

Reliability - in (i.e., defects in the release, defects acceptable for release, errors remaining)

Maintainability - in

Product Correctness - in

Conflicting requirements - in (i.e., customer diversity or bias, potentially conflicting customer
requirements)

Hard versus soft or fuzzy functional requirements - in (i.e., some requirements are hard and fast,
others are negotiable)

Testability - in

A-8

Definition of a failure - in (i.e., What is a failure? A failure to the implementor may be different for a
failure to the user.)

Readiness to deliver - in (i.e., product maturity, Is the product ready to deliver?)

Reusability - in (i.e., How reusable is the software? How reusable is what we are developing?)

Quality of development environment - out potential new issue (i.e., Are there bugs in the tools of the
development environment?)

Traceability - in

Time to market (customer need) - out (A) (i.e., driven by customer need)

Liability - out

Are the evolved requirements really what the user intended?- in (i.e., requirements being what the
user intends)

Portability - in

Affordability - out

Efficiency of product - in

Statusing - out (P) (i.e., measurement)

Scalability - in (.i.e., expandability, Can you make it bigger to launch 25 missiles instead of 5?)

Security - in

Planning and estimating - out

Precision - computational - in

Complexity - in

Integration of measurement data - out (P) (i.e., attributes, data)

Degree of software reuse - in (i.e., incorporating reusable software may lead to duplicative structure
underneath, issues may be different)

Degree of COTS - in

Re-scoping of requirements during development - in (i.e., requirements volatility)

Conformance to development process - out

Standard product quality ranges - in (A) (i.e., for different application areas, bounds, tolerances)

Concurrent engineering - unresolved (P) (T) (i.e., can also apply to product, integrated process and
product design)

Predictability of attainment of quality objectives - in (i.e., when? How early?)

How quickly can changes be field? -out (i.e., ability to make changes, Is it a measure?)

MTTR - in

Fault tolerance - in (i-e., redundancy)

Personnel skills and experience - out

Conformance to standards - in

Rework - in

Product Reviews - out (i.e., scheduled)

Product Size - in

Technical Adequacy - n/a (already an issue)

Maintenance versus Development trade-offs - out (P) (i.e., when to do an activity?)

Adequacy of documentation - in

A-9

Stability of requirements - in

Development Stability - out (i.e., of a working group, language, environment, tools, organization)

Clarity - in

Consistency - in

Measurability - out

Mission criticality - out

Definition of process - out

Effectiveness of IPTs - out (i.e., other development approaches)

Development of Maintenance Methodology - out

Prediction of defects - in

User satisfaction - in

Definition of quality requirements - in

Maintaining and improving the process - out

Technology injection and related risk - out (T)

Capability of organization to deliver required quality and functionality - out (P) (i.e., match of
organizational capabilities to requirements, production function)

Economies of scale - out

Interfaces - in (i.e., of software to people, integration)

Measurement robustness - out

Expandability - delete (i.e., same as scalability)

O-O concerns - out (P) (i.e., how to measure)

Acceptance criteria - in (i.e., fitness for use)

Consistency across multiple organizations- out (P) (subcontractors, prime vs. subcontractors, users)

Quality of COTS/NDI - in

Subcontracting/outsourcing issues - out (P)

Interoperability - in

Common operating environment - in

Configuration management - out (P)

Change control - out (P)

It was recognized that some items on the list are at different levels.

A SPE framework has the following purposes:

• Recognizes product engineering issues

• Provides a tailoring mechanism to perform selection of issue-driven
measurements

• Provides an organization for information and aids in understanding

• Is a tool or model for planning or management

A-10

• Contains issues and measures and a method for helping to select measures

• Shows mapping between issue and measure

• Provides a justification for including a measure because it addresses a
particular issue

• Indicates the relationship of issues (i.e., If you are worried about a specific
issue, then you may been to worry about certain related issues.)

A framework needs to be simple and understandable so that it is used; the framework
must be practical and useful. The framework must employ common sense (i.e., rather
than theoretical) and guide into the best action. The strategy for developing the
framework should be top-down, since a bottom-up development would rely on
immature measures.

Criteria or characteristics of a framework were developed:

• Applicable to different domains (i.e., AIS, weapons, C3I, other)

• Applicable to different development and design methodologies (i.e., Object-
Oriented, others)

• Compatible with the PSM PM (Note: We may need to revisit PSM PM to reconcile
differences)

• Begins with Functionality (size, growth and stability) and Quality (product quality),
may discover additional group

• Focuses on measurable entities

• Allows for different sources of code (i.e., new, reused, COTS, etc.)

• Addresses different user needs (i.e., PMs, software engineers, etc., to be addressed in
the use of measures, process related issues)

Our going forward action was to put issues into specific categories to create a strawman
framework. This activity will be done off-line. It was recommended that the issues be
separated into two groups; Functionality and Quality. Then those two groups should
be further subdivided into categories.

The next PSM SPE WG was scheduled for 18 December 1996.

A-ll/A-12

Practical Software Measurement
Software Product Engineering

Summary of Working Group Meeting of 18 December 1996
Submitted on 3 January 1997

This Workshop had the following objectives:

(1) Categorize the Product Engineering issues identified during the meeting of 30
October 1996

(2) Discuss the business strategy for the PE project
(3) Begin initial discussions of the PE project plan

Definitions of Quality and Functionality were reviewed. Functionality can be defined
as the ability of the software system to meet the needs of the operational uses as
specified in the system requirements. Quality is determined by two contributing
factors: 1) the degree to which the product functionality meets the needs expressed in
system requirements, and 2) how well that functionality meets the user's expectations at
delivery time.

The following comments summarize the round table discussion of Functionality and
Quality and their relationship to each other.

• It was suggested that Functionality can be practically defined as "What does the system do?" (i.e.,
the system does this...). Then, quality can be defined as "How well the system does this...?" Such a
simplification was key to the WG's discussions since PSM PM's value has been to treat a complex
subject and simplify it for users.

• A traditional definition of Quality is conformance to requirements, or economical performance to
requirements. Quality can be seen as the degree to which the requirements have been realized.

• There was concern that definition of Functionality may actually be the definition of Quality. Adding
new Functionality may improve the Quality of the product. Two illustrative examples were
described (i.e., Microsoft's Windows 3.1 and Windows 95; two systems that provide determination of
the pitch, roll, and yaw of a vehicle in two different ways to the user).

• It is important to determine the relationship between Quality and Functionality because their
definitions may establish their relationships. If Functionality is defined as how well requirements are
met, then Functionality affects the Quality of the product.

• Performance may be satisfied by Functionality, and Performance may define Quality. For example,
in the submarine domain, Functionality is defined by Performance. Performance is considered a
functionality requirement.

• Basing the definition of Functionality on requirements may present a dilemma since requirements
may be dependent upon the current state of technology. Changing technology may cause the
requirements to be a moving target.

A-13

Functionality is relevant to testing (i.e., either the product passes the contract requirement, or it fails).
The WG felt is appropriate to address the requirements that are documented, rather than implied.
The WG elected to table the discussion concerning implied or perceived requirements.

The expectations of Functionality may not meet the desired Quality.

One may have 100% conformance to requirements, but may not have a quality product.

Functionality and Quality can be viewed in light of the evolution of software and the "sell-off" of a
system. An ECP may be initiated with respect to the current requirements which cannot address the
customer's changed view. Quality measurement may support the decision to accept the product.

Several researchers have documented work in software quality factors. For example, McCall, Boeing,
and Rome Laboratory, have contributed to this body of work. These approaches use 'ilities which are
difficult to map to quantifiable measures and attributes. Instead, it was suggested that Tom Gill's
work may be a more appropriate approach for practical measurement. Gill asks the questions, "Is it
testable? Is it measurable?" If not, eliminate.

It was proposed that Functionality and Quality can be viewed as a Venn diagram as shown in Figure
1. The stated requirements are the intended Functionality, whereas the product is the realized
Functionality. Quality can be considered the actual degree to which the product meets its
requirements. This diagram implies that measures may be needed for both product functionality and
product expectations. User needs may change resulting in a shift in the circles and their intersections.

Figure 1. Products, Quality and Functionality

The WG decided that, prior to determining PSM PE definitions of Functionality and Quality, work in
the commerce arena and standards initiatives should be considered. Some definitions of terms are
still moving targets, whereas others are baselined.

If WG members have other definitions for Functionality and Quality that they would like the group
to consider, Sean Arthur requested that they be sent to him and he will collate for distribution. He
asked respondents to limit the definitions to five sentences.

A-14

In collating the individuals results of the categorization exercise, the following issues
did not have a clear consensus concerning as to the categorization of a Functionality or
Quality issue:

efficiency of product
product size

acceptance criteria

portability
product correctness

definition of a failure

readiness to deliver

complexity

requirements volatility

MTTR
rework - restore may be better than repair

stability of requirements

consistency
user satisfaction

ease of use

usability

Nonetheless, the WG felt that the categorization exercise was successful in that it
verified that there are, indeed, two categories of issues, and they are Functionality and
Quality. The WG also wanted to verify that the list of issues is complete, none are
omitted, and issues do not pose redundancy. The WG still needs to verify that
Performance's relationship with Cost, Schedule, Functionality, and Quality.

The definitions of Functionality and Quality may be dependent upon the user who is
asking the question (i.e., user defined). It was pointed out that each user may define
different concerns for Functionality and Quality. Each user may have different
Common Quality Issues (CQIs), and the user may need to tradeoff Functionality and
Quality. Of the three types of users previously defined (i.e., Users, Developers,
Maintainers), the operational user is the focus of Product Engineering. Figure 2
illustrates these concepts.

It was proposed that software products can be divided into direct products and indirect
products. Direct products are those items which must be created before the source code
can be delivered. Indirect products are those items which support the development of
the software, but are not necessary for its development. Examples of direct products
include system requirements, software requirements, designs, and source code.
Examples of indirect products include software development plans, configuration
management plans, test plans, unit development folders, user's manuals, and
installation manuals. The WG proposed to treat direct and indirect products differently
from a measurement perspective.

A-15

Figure 2. A user viewpoint of measurement issues

Internal product attributes are those characteristics of a product which can be measured
solely in terms of the product itself. External product attributes are those characteristics
of a product which can be measured only with respect to the product as it interacts with
its environment. The attribute of size has different meanings for the entities of
resources, processes, and products.

The following questions were raised:

Question: Should PSM PE address the product's process and resource issues, or just the products themselves?

Most process and resource attributes for products are already discussed in PSM PM.

Question: Should process and resource measures for products be discussed again in PSM PE?

Advantage: "One stop shopping"

Disadvantages: Redundancy, potential inconsistencies, must have both books

The following items were proposed as outside of the scope of Product Engineering:

• Resources (e.g., common operating environment, etc.)

• Processes (e.g., concurrent engineering, definition of quality, quality flow through, etc.)
• Products (e.g., clarity, consistency, etc.)

It was proposed that if an issue cannot be measured solely within the context of an
product and its environment, it should be excluded from PSM PE. Process and resource
issues should be dealt with only in PSM PM. Pointers between PE and PM may help
increase circulation of both guidebooks. The WG agreed that top-down searches for
measures to address perceived issues may be better than a bottom-up development of
issues based upon the internal or external attributes. Planning may occur top-down
whereas design may employ bottom-up techniques.

A plan for PSM PE and PM was presented as illustrated in Figure 3.

A-16

PSM
Practical Software

Measurement

PM
Program

Manangement
Guidebook

Version 2.1

PE
Product

Engineering

Version 3.0

Version 4.0

Version 5.0

Figure 3. Plan for PSM PE as it relates to PSM PM

PSM's PM and PE can be applied to a single project, as well as across multiple projects.
Chief Executive Officers (CEOs) are interested in addressing quality issues across
projects to assess improvements within their organizations over time. Measuring for
Process Improvement is an emerging technology. This technology supports a CEO's
organizational view needs a practical approach since, to date, it has usually been
addressed on a theoretical basis. Organizational Performance Measurement is
anticipated to be a large market, interested participants could fund the multi-project
view.

It was decided that the next step was to work as a subcommittee and the PE WG, as a
whole, will act a reviewer of the PE subcommittee work products.

A-17

Appendix B - Code Inspection Checklist Sources

B-l/B-2

List of Sources for the Ada Checklist in this Appendix:

[BEA94] Beaulieu, M.F. and Fischer, L.P. How to successfully identify defects during an inspection.
Proceedings ofSTC '94, April 1994.

[DUN84] Dunn, R.H. Software Defect Removal. McGraw-Hill, New York, 1984.

[EBE94] Ebenau, R.G. and Strauss, S.H. Software Inspection Process. McGraw-Hill, New York, 1994.

[FAG76] Fagan, M.E. Design and code inspection to reduce errors in program development. IBM
Systems Journal, Vol. 15, No. 3,1976, pp. 182-211.

[NASA94] Angellatta, R. et. al. Software Verification Plan for GCS, NASA Langley Research Center,
Hampton, VA, December 1994.

[ONE88] O'Neill, D. and Ingram, A.L. Software Inspections Tutorial. In SEI Technical Review, Software
Engineering Institute, Pittsburgh, 1988.

[SQF95] Software Quality Framework as Implemented in QUES Release 1.5, Software Productivity
Solutions, Inc., Indialantic, FL, February 1995.

Source checklists follow in the above order.

B-3

[BEA94] Beaulieu, M.F. and Fischer, L.P. How to successfully identify defects during an
inspection. Proceedings ofSTC '94, April 1994.

Checklist Question Used Why Rejected

1 Is the module preamble correct and complete? /

2 Are all data declarations commented? /

3 Are all data names descriptive enough? /

4 Are variables initialized? /

5 Are constant literals correct? /

6 Are case statements explicitly defined? Too vague: what does
"defined" mean?

7 Are exception cases handled? /

8 Are loop limits correct? /

9 Are all branch conditions correct? /

10 Are procedures called correctly? Ada compiler will check

11 Are procedural return values handled? Too vague: handled how?

12 Are parameter type declarations correct? consistent? Ada compiler will check

13 Are variable type declarations correct? consistent? /

14 Is the code an accurate representation of the design? Design not available

15 Have all development standards been followed? Too vague: standards not
specified

16 Have all coding standards been followed? Too vague: standards not
specified

17 Is it readable? Too subjective

18 Is it reusable? Too subjective

19 Is it portable? Portability is not a concern

20 Have timing, sizing, and throughput been addressed? Efficiency is not a concern

B-4

[DUN84] Dunn, R.H. Software Defect Removal. McGraw-Hill, New York, 1984.

Checklist Question Used Why Rejected

Is the compilation (or assembly) listing free of fault messages? Not part of code inspection
process

Have the deficiencies noted in the standards audit been
corrected?

Not part of code inspection
process

Do data definitions exploit typing capabilities to advantage? Too subjective

Are mixed-mode expressions in violation of project standards? Standards not specified: too
vague

Do all pointers and indexes adhere to binding conventions? Conventions not specified:
too vague

Except for appropriate delimiters (for example, those in for N in
1..10), are constants expressed as parameters?

Not appropriate for Ada

For assembly language programs, have registers been saved on
entry and restored on exit? Have stacks been properly
initialized?

Not appropriate for Ada

For assembly language programs, have project standards for
register use been observed?

Not appropriate for Ada

For branch points that correspond to the detailed design
documentation, are the conditions sufficient? (that is, if n
conditions are required for a decision, are all n present and
properly accounted for?)

Design documentation not
available

Are all conditions expressed in the correct sense (for example A
> B versus B > A)?

/

Do control constructs conform to structured programming
standards?

Standards not specified: too
vague

Are standards that restrict the depth to which loops and
branches may be nested adhered to? Are loops and branches
properly nested?

Standards not specified: too
vague

Are indexes or subscripts properly initialized? /

Are loop termination conditions invariably achievable? /

Are any branch conditions mutually exclusive (such that they
can lead to unreachable code)?

/

For assembly language programs, are the expected contents of
memory used in lieu of their addresses?

Not appropriate for Ada

Do processes occur in the correct sequence? /

Where applicable, are divisors tested for zero or noise? /

Where applicable, are indexes, pointers, and subscripts tested
against array, record, or file bounds?

Ada compiler will check

B-5

[DUN84] Dunn, R.H. Software Defect Removal. McGraw-Hill, New York, 1984.

Checklist Question Used Why Rejected

Are imported data tested for validity? Are they ever reassigned
except when they were transmitted for the express purpose of
updating?

/

Do actual and formal interface parameter lists match? Ada compiler will check

Do data declarations observe data boundaries implied by
machine architecture, language, or user-defined declarations?

Not appropriate for Ada

Are all variables used? Are all output variables assigned? /

Can any statements that are enclosed within loops be placed
outside the loops without computational effect?

/

Is a more efficient mechanism for an input or output operation
possible?

Efficiency is not of concern

Are the correct data being operated on at each statement? Too vague

Are any labels unreferenced (a warning that something else
may be amiss)?

Not appropriate for Ada

Are equations properly formed (e.g., if both A and B are to be
divided, (A+B)/C and not A+B/Q?

/

Can a connection to an external device result in an interminable
wait?

Efficiency is not of concern

If there are requirements on execution time, will they be met? Efficiency is not of concern

Does the code fit within its allocated storage? Local data? Efficiency is not of concern

Have all the elements of the design been implemented as they
were specified?

No design spec available

Has each function of the external specification for this code
been correctly complied with?

No extenal spec functions
available

B-6

[EBE94] Ebenau, R.G. and Strauss, S.H. Software Inspection Process. McGraw-Hill,
New York, 1994.

Checklist Question Used Why Rejected

Data reference defects

1 Is there a referenced variable whose value is unset or
uninitialized?

/

2 For all array references, is each subscript value within the
defined bounds of the corresponding dimensions?

Ada compiler will
check

3 For all array references, does each subscript have an integer
value? This may not be a defect, but it is a dangerous practice.

/

4 For all references through pointer variables, is the referenced
storage currently allocated?

/

5 Does a storage area have alias names with different pointer
variables? This is not a defect, but it is a dangerous practice.

/

6 Does the value of a variable have a type or attribute other than
that expected? This is a common problem for storage referenced
through pointers.

Ada compiler will
check

7 Are there any explicit or implicit addressing problems?
Examples are (a) the physical storage is smaller than the storage
addressed in the program, and (b) the address is defined as byte
address but used as bit address.

Not appropriate for
Ada

8 Does the index of a string exceed its boundary? Ada compiler will
check

9 Are there any off-by-one defects in indexing operations or in
subscript references to arrays?

/

Data declaration defects

1 Have all variables been explicitly declared? If a variable is not
declared, is it understood that the variable is a global variable?

Not appropriate for
Ada

2 If a variable is initialized in the declarative statement, is it
properly initialized?

/

3 Is each variable assigned the correct length, type, and storage
class?

/

4 Are there any variables that have similar names (e.g. VOLT and
VOLTS)? This is not a defect, but it is a sign of confusion.

/

Computation defects

1 Are there any computations using variables having inconsistent
data types (e.g., a Boolean variable in an arithmetic expression)?

/

2 Are there any mixed-mode (such as integer and floating-point)
computations?

/

B-7

[EBE94] Ebenau, R.G. and Strauss, S.H. Software Inspection Process. McGraw-Hill,
New York, 1994.

Checklist Question Used Why Rejected

3 Are there any computations using variables having the same
type but different length?

/

4 Is an overflow or underflow exception possible during the
computation of an expression?

/

5 Is it possible for the denominator in a division operation to be
zero?

/

6 Is it possible that a variable goes outside its meaningful range? Ada compiler will
check

7 For expressions with more than one operator, is the order of
computation and precedence of operators correct?

/

8 Are there any invalid uses of integer arithmetic, particularly
divisions? Note that [2x(I/2)] may not be equal to I.

/

9 Are there any computations on nonarithmetic variables? /

Comparison defects

1 Are there any comparisons between variables having
incompatible data types?

/

2 Are there any mixed-mode comparisons or comparisons between
variables of different length?

/

3 Are the comparison operators correct? /

4 Does the Boolean expression state what it is supposed to state?
Programmers often make mistakes when writing Boolean
expressions involving and/or.

/

5 Is the precedence or evaluation order of the Boolean expressions
correct?

/

6 Do the operands of a Boolean expression have logical values (0
orl)?

/

7 Are there any comparisons of equality between two floating
point numbers? Note that [10.0 x 0.1] is seldom equal to 1.0.

/

Control flow defects

1 Does every loop eventually terminate? Devise an informal proof
or arguments showing that each loop will terminate.

/

2 Does the program have any goto statements? If yes, can you
eliminate them?

/

3 Is it possible that a loop will never be executed because the entry
condition is false?

/

B-8

[EBE94] Ebenau, R.G. and Strauss, S.H. Software Inspection Process. McGraw-Hill,
New York, 1994.

Checklist Question Used Why Rejected

4 Are there any off-by-one defects (i.e., more than one or fewer
than one iteration)?

/

5 For each switch statement, does it have a default branch? /

6 Are there any nonexhaustive decisions? /

Interface defects

1 Is the number of formal parameters (in a called routine) equal to
the number of actual parameters (in the calling routine)? Are
their orders correct?

Ada compiler will
check

2 Do the attributes (e.g., type and length) of each formal parameter
match the attributes of the corresponding actual parameters?

Ada compiler will
check

3 Does the unit system of each formal parameter match that of the
corresponding actual parameters?

/

4 Does a function modify the value of a parameter which is
intended to be an input value?

/

5 Do global variables have the same definitions and attributes in
all functions referencing them?

/

Input/output defects

1 Have all fines been opened before use? /

2 Are end-of-file (EOF) conditions detected and handled correctly? /

3 Are end-of-line conditions detected and handled correctly? /

4 Do the format specifications match the information in the
input/output (I/O) statement? For example does the program
expect an integer while the input is a character?

Not appropriate for
Ada

5 Are there spelling or grammatical errors in the printed or
displayed output?

/

6 Does the program check the validity of its input? /

Missing Code

The last and most common and serious defect in the program is
missing code, i.e., when programs do not check a certain
condition(s) or do not implement a certain function(s).

/

B-9

[FAG76] Fagan, M.E. Design and code inspection to reduce errors in program
development. IBM Systems Journal, Vol. 15, No. 3,1976, pp. 182-211.

Checklist Question Used Why Rejected

h Logic

Missing

1 Are all constants defined? Not appropriate for Ada

2 Are all unique values explicitly tested on input parameters? Not appropriate for Ada

3 Are values stored after they are calculated? Not appropriate for Ada

4 Are all defaults checked explicitly tested on input parameters? Not appropriate for Ada

5 If character strings are created are they complete, are all
delimiters shown?

/

6 If a keyword has many unique values, are they all checked? Not appropriate for Ada

7 If a queue is being manipulated, can the execution be
interrupted; if so, is queue protected by a locking structure; can
queue be destroyed over an interrupt?

Not appropriate for Ada

8 Are register being restored on exits? Not appropriate for Ada

9 In queuing/dequeuing should any value be
decremented /incremented?

Not appropriate for Ada

10 Are all keywords tested in macro? Not appropriate for Ada

11 Are all keyword related parameters tested in service routine? Not appropriate for Ada

12 Are queues being held in isolation so that subsequent
interrupting requestors are receiving spurious returns
regarding the held queue?

Not appropriate for Ada

13 Should any registers be saved on entry? Not appropriate for Ada

14 Are all increment counts properly initialized (0 or 1)? Not appropriate for Ada

Wrong

1 Are absolutes shown where there should be symbolics? Not appropriate for Ada

2 On comparison of two bytes, should all bits be compared? Not appropriate for Ada

3 On built data strings, should they be character or hex? Not appropriate for Ada

4 Are internal variables unique or confusing if concatenated? Not appropriate for Ada

Extra

1 Are all blocks shown in design necessary or are they
extraneous?

Design not available

B-10

[NASA94] Angellatta, R. et. al. Software Verification Plan for GCS, NASA Langley
Research Center, Hampton, VA, December 1994.

Checklist Question Used Why Rejected

Data Usage

1 Are COMMON BLOCKS labeled with the same names as the
global data stores defined in GCS Data Requirements Dictionary
Part II?

Not appropriate for
Ada; project specific

2 Do the variables in the COMMON BLOCKS use the same names
and order as the variables in the global data stores defined in the
GCS Data Requirements Dictionary Part II?

Not appropriate for
Ada; project specific

3 Do the variables in the COMMON BLOCKS have the same data
types, number of dimensions, and size of each dimension as
specified in the GCS Data Requirements Dictionary Part I?

Not appropriate for
Ada; project specific

4 If the code includes variables in addition to those defined in the
global data stores in the GCS Data Requirements Dictionary Part
II, are they defined, initialized, and used only within the scope of
a subframe?

Not appropriate for
Ada; project specific

5 Are references to array subscripts expressed in column, row
order?

Not general enough

6 Is array subscript usage within array bounds? Ada compiler will
check

7 Are constant values used only as constants and not as variables? /

8 Are DO loop index variables used only within the loop? /

9 Does the code maintain that same loop index within a loop? /

Structure

1 Does the code comply with the software architectures from the
design?

Design not available

2 Does the code avoid the use of GOTO statements? /

3 Do all the code's statements perform a clear function? Too subjective

4 Is the code void of any isolated or dead code segments? Automated check

Functions and Subroutines

1 Does each unit have a single function, and is it clearly described? /

2 Do actual and formal parameters agree in number, order,
dimension, and data type?

Ada compiler will
check

3 Are the functions of subroutine input and output parameters
described?

/

4 Are all the parameters passed to a subroutine used? /

B-ll

[NASA94] Angellatta, R. et. al. Software Verification Plan for GCS, NASA Langley
Research Center, Hampton, VA, December 1994.

Checklist Question Used Why Rejected

5 Do the functions and subroutines return data of the correct type? Ada compiler will
check

6 Is there a call to GCS_SIM_RENDEZVOUS before each
subroutine?

Project specific

7 Are calls to GCS_SIM_RENDEZVOUS void of all parameters? Project specific

8 Does the code avoid using system calls? Portability is not a
concern

Traceability

1 Does the code satisfy all the requirements in the Requirements
Traceability Matrix including all derived requirements?

requirements not
available

2 Do units map to a well-defined section in the Design? design not available

Logic

1 Do logical conditions correctly use logical operators (.AND.,
.OR., .NOT.)?

Too vague

2 Do logical conditions correctly use relational operators (.GT.,
.GE., .LT., .LE, .EQ., .NE.)?

Too vague

3 Are all logical conditions included? Too vague

4 Are comparisons of real variables to exact values avoided? /

5 Is loop nesting correct? /

6 Do loops have single exit and single entry points? /

Exceptional Conditions

1 Is there code to detect the exceptional conditions in the Non-
Functional section of the Requirements Traceability Matrix?

Project specific

2 If an exceptional condition is detected, does the code print the
appropriate message to FORTRAN logical unit 6?

Project and
FORTRAN specific

Computations

1 Are mixed type mathematical expressions avoided? /

2 Do computations contain values with the same unit dimensions? /

3 Does the code avoid assigning real expressions to integers
causing truncation?

/

4 Are bit manipulations done correctly? /

B-12

[NASA94] Angellatta, R. et. al. Software Verification Plan for GCS, NASA Langley
Research Center, Hampton, VA, December 1994.

Compliance with Standards

Does the code follow basic structured programming techniques?

Does the software code and documentation comply with the
approved code standards?

/

Too vague; standards
not specified

B-13

[ONE88] O'Neill, D. and Ingram, A.L. Software Inspections Tutorial. In SEI Technical
Review, Software Engineering Institute, Pittsburgh, 1988.

la

lb

lc

Id

le

If

Checklist Question Used Why Rejected

Completeness

Has traceability been assessed?

Has available tool assistance been applied in assessing
traceability?

Have all predecessor requirements been accounted for?

Were any product fragments revealed not to have traceability to
the predecessor requirements?

What is the relationship of requirements to product component:
one-to-one, many-to-one, one-to-many?

Requirements not
available

Requirements not
available

Requirements not
available

Requirements not
available

Not yes/no

Correctness

Are structured programming prime constructs used correctly:

All: is the function commentary satisfied for the sequence?

Loops: Does the loop terminate?

Loops: Is a one-time loop acceptable?

Loops: Are there discrete steps through the loop?

Loops: Is the control variable not modified in the loop?

Loops: Is the loop initialized and terminated properly?

Case: Is the domain partitioned exclusively and exhaustively?

Are proper programs composed of multiple prime programs
limited to single entry and single exit?

Are disciplined data structures used to manipulate and
transform data?

Does the input domain span all legal values?

Does the input domain span all possible values, with systematic
exception handling for illegal values?

/

/

/

/

/

/

/

[redundancies removed]

Commentary not
available

Too subjective

/

Does the output range span all legal values?

For modules, do the state data span all legal values?

Too vague

Too vague

Too vague

B-14

[ONE88] O'Neill, D. and Ingram, A.L. Software Inspections Tutorial. In SEI Technical
Review, Software Engineering Institute, Pittsburgh, 1988.

Style

1 Are style conventions for block structuring defined and
followed?

Too vague: conventions
not specified

2 Are naming conventions defined and followed? Too vague: conventions
not specified

3 Are the semantics of the product component traceable to the
requirements?

Too vague: conventions
not specified

4 Are style conventions for commentary defined and followed? Too vague: conventions
not specified

5 Are style conventions for alignment, upper/lower case, and
highlighting defined and followed?

Pretty printer can do this

6 Are templates used for repeating patterns? Process information not
available

Rules of Construction

1 Is the interprocess communication protocol defined and
followed?

Too vague: protocol not
specified

2 Are architectural conventions defined and followed for tasking
and concurrent operations?

Too vague: conventions
not specified

3 Are architectural guidelines defined and followed for program
unit construction?

Too vague: guidelines
not specified

4 Are data representation conventions defined and followed? Too vague: conventions
not specified

Multiple Views

1 Has the product component been assessed for execution
considerations such as timing, memory use, input and output,
initialization, and finite word effects?

Efficiency is not a
concern

2 Has the product component been assessed for packaging
considerations such as program unit construction, program
generation process, and target operation, including scheduling
and memory management?

Logistics is not a concern

3 Has the product component been assessed for construction
considerations such as structured programming, module
strength and coupling, programming language, operating
system, and physical hardware interfaces?

Not part of code
inspection process

4 Has the product component been assessed for satisfying the
functional baseline?

Baseline not available

5 Has the product component been assessed for user interface
considerations?

Usability is not a
concern

B-15

[ONE88] O'Neill, D. and Ingram, A.L. Software Inspections Tutorial. In SEI Technical
Review, Software Engineering Institute, Pittsburgh, 1988.

Metrics

1 Have the source lines of code been recorded? Metrics not
appropriate for
checklist

2 Has the project productivity been assessed? Metrics not
appropriate for
checklist

3 Has the programmer productivity been assessed? Metrics not
appropriate for
checklist

4 Have the errors per thousand lines of source code been
recorded?

Metrics not
appropriate for
checklist

5 Has the product complexity been assessed? Metrics not
appropriate for
checklist

6 Has the mean time to failure been assessed? Metrics not
appropriate for
checklist

7 Has computer resource loading for CPU, memory, and I/O been
assessed?

Metrics not
appropriate for
checklist

Technology

1 Is systematic programming used, including structured
programming primes, proper programs, and disciplined data
structures?

Redundant

2 Is systematic design used to produce string modules, loosely
coupled?

Too subjective

3 Does the product component utilize information hiding,
separation of concerns, and localization?

Too subjective

4 Does the product component utilize abstraction and
encapsulation?

Too subjective

5 Is the product component understandable? Too subjective

6 Is the product component maintainable and adaptable? Maintainability and
Adaptability not a
concern

B-16

[SQF95] Software Quality Framework as Implemented in QUES Release 1.5, Software
Productivity Solutions, Inc., Indialantic, FL, February 1995.

Identifier Question Answer Used
Type

Why Rejected

AC.1.05.e During execution, are all outputs within the
specified accuracy tolerances?

Y/N/NA /

AM.1.05.e When an error condition is detected, is its
resolution determined by the calling CSU?

Y/N/NA /

AM.2.01.e Are error tolerances specified for all particular
external input data (e.g., range of numerical
values, legal combinations of alphanumeric
values)?

Y/N/NA /

AM.2.03.e Are all applicable external inputs checked with
respect to specified ranges before use?

Y/N/NA Related to
AM.1.05.e

AM.2.04.e Are all applicable external inputs checked with
respect to illegal combinations and conflicting
requests prior to use?

Y/N/NA Related to
AM.1.05.e

AM.2.05.e Are all detected errors with respect to applicable
external inputs reported before processing
begins?

Y/N/NA Related to
AM.1.05.e

AM.2.06.e Are all applicable external inputs checked for
reasonableness before processing begins?

Y/N/NA Related to
AM.1.05.e

AM.3.01.e Is recovery provided for all computational
failures within the CSU?

Y/N/NA Related to
AM.1.05.e

AM.3.02.e Are all critical (i.e., supporting a mission-critical
capability) loop and index parameters checked by
explicit checks in the code or by features of the
Ada language for out-of-range values before use?

Y/N/NA Automatic for Ada

AM.3.03.e Are all critical (i.e., supporting a mission-critical
capability) subscript values checked for out-of-
range values before use?

Y/N/NA Automatic for Ada

AM.3.04.e Are all critical (i.e., supporting a mission-critical
capability) outputs checked for reasonable values
before final outputting?

Y/N/NA /

AM.4.01.e Is recovery made (e.g., exception handlers or
other means) from all detected hardware faults
(e.g., arithmetic faults, hardware failure, clock
interrupt)?

Y/N/NA Related to
AM.1.05.e

AP.l.Ol.e Is the CSU free from references to the database
management scheme (e.g., all data calls for data
base information are processed through an
executive)?

Y/N/NA Not applicable to
Correctness or
Understandability

B-17

[SQF95] Software Quality Framework as Implemented in QUES Release 1.5, Software
Productivity Solutions, Inc., Indialantic, FL, February 1995.

AP.2.01.e How many unique parameters are in the unit? _/NA Not meaningful by
itself

AP.2.02.e How many global variables are referenced by the
unit? (a global variable is defined as a variable
declared or visible in a unit other than that
containing the code referencing the variable)?

_/NA /

AP.2.03.e Do the comments for global data in the CSU
explain where the data is derived, the data's
composition, and how the data is used?

Y/N/NA /

AP.2.04.e Does the unit contain comments for all parameter
I/O and local variables describing each data
item's composition and use?

Y/N/NA /

AP.3.01.e Is the unit free from computer architecture
references?

Y/N/NA Not applicable to
Correctness or
Understandability

AP.3.03.e How many lines of code are there in the unit,
excluding comments and blank lines?

_/NA Not meaningful by
itself

AP.3.04.e How many non-HOL lines of code are there in
the unit, excluding comment and blank lines?
(For example, Assembly Language, Intermediate
Code.)

_/NA /

AP.4.01.e Is the unit free from microcode instruction
statements?

Y/N/NA Not applicable to
Correctness or
Understandability

AT.l.Ol.e Are all array bounds, upper and lower (e.g.,
index constraints) defined parametrically?

Y/N/NA Not applicable to
Correctness or
Understandability

AT.ZOl.e Are all accuracy, convergence, timing attributes,
and timing limitations defined parametrically for
this CSU?

Y/N/NA Not applicable to
Correctness or
Understandability

AT.2.02.e Are tables used in a manner which would ease
the task of changing or expanding capabilities?

Y/N/NA Not applicable to
Correctness or
Understandability

AU.1.03.e How many lines of source code are there to
handle hardware/device interface protocol?

_/NA Not meaningful by
itself

AU.1.05.e Is the CSU required to perform hardware/device
interface protocol?

Y/N/NA Not applicable to
Correctness or
Understandability

CL.1.03.e Does the CSU receive input from other systems? Y/N/NA Not applicable to
Correctness or
Understandability

CL.1.04.e Does the CSU transmit data to other systems? Y/N/NA Not applicable to
Correctness or
Understandability

B-18

>

[SQF95] Software Quality Framework as Implemented in QUES Release 1.5, Software
Productivity Solutions, Inc., Indialantic, FL, February 1995.

CL.2.02.e Do all data representations and translations
between representations of data comply with the
established standard?

Y/N/NA Too vague:
standard not
specified

CL.2.03.e Does the unit perform data translation between
representations of data?

Y/N/NA Not applicable to
Correctness or
Understandability

CP.l.Ol.e Are the inputs, processing, and outputs of the
CSU specified?

Y/N/NA Redundant

CP.1.02.e How many data items are identified? _/NA Not meaningful by
itself

CP.1.03.e How many identified data items are defined
(documented with regard to their source,
meaning and format)?

_/NA /

CP.1.04.e How many identified data items are defined,
computed, or obtained from an external source?
(For example, referencing: global data with
preassigned values, input parameters with
preassigned values.)

_/NA Not meaningful by
itself

CP.1.05.e How many data items are referenced? _/NA Not meaningful by
itself

CP.1.06.e How many defined data items are referenced? _/NA /

CP.l.lO.e Are all conditions and alternative processing
options defined for each decision point in the
CSU?

Y/N/NA Excessive

CP.l.ll.e Are all parameters in the argument list used in
the unit?

Y/N/NA /

CS.1.04.e Does the calling sequence comply with the
established standard?

Y/N/NA Too vague:
standard not
specified

CS.1.05.e Does the CSU comply with the standards
established for the calling sequence protocol
between CSUs?

Y/N/NA Too vague:
standard not
specified

CS.1.08.e Does the CSU comply with the established
standard for the external I/O protocol and format
for all CSUs?

Y/N/NA Too vague:
standard not
specified

CS.l.ll.e Does the handling of errors comply with the
established standard?

Y/N/NA Too vague:
standard not
specified

CS.2.05.e Do the data names in this CSU comply with the
established standard?

Y/N/NA Too vague:
standard not
specified

CS.2.08.e Do the definitions and uses of global variables
comply with the established standard?

Y/N/NA Too vague:
standard not
specified

B-19

[SQF95] Software Quality Framework as Implemented in QUES Release 1.5, Software
Productivity Solutions, Inc., Indialantic, FL, February 1995.

CS.2.14.e Do all references to the same data use single
unique names?

Y/N/NA /

EP.l.Ol.e Is the unit optimized for processing efficiency? Y/N/NA Not applicable to
Correctness or
Understandability

EP.1.03.e Is the CSU optimized for processing efficiency
(i.e., compiled with an optimizing compiler or
coded in assembly language)?

Y/N/NA Not applicable to
Correctness or
Understandability

EP.1.05.e How many loops are in the unit (WHILE loops,
REPEAT UNTIL loops, and iteration loops)?

VNA Not meaningful by
itself

EP.1.06.e How many loops contain non-loop dependent
statements? (For example, initializing or
calculating a variable which is not related to any
values which change within the loop.)

_/NA

EP.1.07.e How many instances are there of 2 or more
operations in an expression (compound
expression)?

_/NA

Not applicable to
Correctness or
Understandability

Not meaningful by
itself

EP.1.08.e How many compound expressions are
recalculated needlessly (no variables in the
expression have been reassigned values.)?

_/NA

How many instances of bit/by ti
packing/unpacking are perforn

Not applicable to
Correctness or
Understandability

EP.l.lO.e

pragma PACK in Ada.)?
performed (i.e., use of the

VNA

EP.l.ll.e How many instances of bit /byte /NA
packing/unpacking are performed needlessly in
a loop (i.e., could be performed outside the loop)?
(Guaranteed score of 0 of pragma PACK is used
in Ada.)

EP.2.03.e How many arithmetic expressions in the unit? _/NA

EP.2.04.e How many arithmetic expressions with different /NA
sized components in the same expression? (For
example, byte/word/double word.)

Not meaningful by
itself

Not applicable to
Correctness or
Understandability

Not meaningful by
itself

Not meaningful by
itself

EP.2.05.e How many arithmetic expressions with mixed
data types in the same expression? (For example,
integer/real/boolean/literal.)

_/NA /

EP.2.06.e How many data items are in the unit (arrays,
constants, variables, etc.)?

_/NA Not meaningful by
itself

EP.2.07.e How many data items are modified in the unit? VNA Not meaningful by
itself

ES.1.08.e Are there any data packing operations in the Y/N/NA
unit?

Not applicable to
Correctness or
Understandability

B-20

[SQF95] Software Quality Framework as Implemented in QUES Release 1.5, Software
Productivity Solutions, Inc., Indialantic, FL, February 1995.

ES.1.09.e Is the CSU optimized for storage efficiency (i.e.,
compiled with an optimizing compiler or coded
in assembly language)?

Y/N/NA

FS.l.Ol.e Does this CSU perform a single capability? Y/N/NA

FS.1.02.e Is a description of the capability(s) performed
provided in the CSU's comments?

Y/N/NA

GE.2.01.e Are the following processing categories mixed in Y/N/NA
this CSU: External Input, External Output, or
Algorithmic Processing?

GE.2.03.e Is this CSU free from machine-dependent
operations (e.g., no representation clauses,
compiler predefined pragmas, or use of system-
defined types)?

Y/N/NA

GE.2.04.e Can the volume of data processed by the unit be
changed without effecting the executable code?
(For example, data volume limits are
parameterized.)

Y/N/NA

GE.2.05.e Can the range of data input be changed without Y/N/NA
effecting the executable code? (For example, no
error tolerances are specified, no range-tests or
reasonableness checks are performed.)

ID.l.Ol.e Is a standard subset of the implementation
language used?

Y/N/NA

ID.1.03.e How many references are there to system library
subprograms, utilities, or other system provided
facilities?

_/NA

ID.1.05.e Is the unit free from nonstandard constructs of
the implementation language(s)?

Y/N/NA

ID.2.03.e Does the unit perform external input or output? Y/N/NA

ID.2.04.e Does the CSU contain operations dependent on Y/N/NA
word or character size?

ID.2.05.e Does the unit contain data elements
representations that are machine dependent?

Y/N/NA

MO.1.02.e Is the CSU coded and tested according to
structured techniques? (For example, top-down
implementation and testing.)

Y/N/NA /

MO.1.03.e Does this CSU have a single processing objective Y/N/NA
(i.e., all processing within the CSU is related to
the same objective)?

Not applicable to
Correctness or
Understandability

Not applicable to
Correctness or
Understandability

Not applicable to
Correctness or
Understandability

Not applicable to
Correctness or
Understandability

Not applicable to
Correctness or
Understandability

Not applicable to
Correctness or
Understandability

Not applicable to
Correctness or
Understandability

Not applicable for
Ada

Not applicable to
Correctness or
Understandability

Not applicable for
Ada

Not applicable to
Correctness or
Understandability

Not applicable to
Correctness or
Understandability

Not applicable to
Correctness or
Understandability

Testing
information not
available

Too subjective

B-21

[SQF95] Software Quality Framework as Implemented in QUES Release 1.5, Software
Productivity Solutions, Inc., Indialantic, FL, February 1995.

MO.1.04.e Are the lines of source code for this unit
(excluding comment lines and blank lines) 100
lines or less?

Y/N/NA Not generally
accepted size
threshold

MO.1.05.e How many unique parameters are in the unit? ,/NA Not meaningful by
itself

MO.1.06.e How many calling sequence parameters are
control variables (select an operating mode or
submode in the unit, direct the sequential flow, or
otherwise directly influence the capability of the
unit)?

_/NA Not meaningful by
itself

MO.1.07.e Is all input data passed into the unit through
calling sequence parameters (i.e., no data is input
through global areas or input statements)?

Y/N/NA Redundant with
AP.2.02.e

MO.1.08.e Is output data passed back to the calling unit?
(For example, through calling sequence
parameters or global areas.)

Y/N/NA Not meaningful by
itself

MO.1.09.e Is control always returned to the calling unit
when execution is completed?

Y/N/NA Not required in all
cases; too
generalized

MO.l.lO.e Is temporary storage (work space reserved for
intermediate or partial results) used only by this
CSU during execution (i.e., not shared with other
CSUs)?

Y/N/NA Not applicable to
Correctness or
Understandability

MO.2.05.e What is the cohesion value of this CSU? _/NA Not meaningful by
itself

SD.1.02.e How many comment lines are there in the unit? _/NA Not meaningful by
itself

SD.1.03.e How many lines of source code with embedded
comments?

_/NA Not meaningful by
itself

SD.2.01.e Does the CSU's prologue contain all the
information in accordance with the established
standard?

Y/N/NA /

SD.2.02.e Is the identification and placement of all
comments in the CSU in accordance with the
established standard?

Y/N/NA Too vague:
standard not
specified

SD.2.03.e Are all decision points and transfers of control
commented in the CSU?

Y/N/NA Excessive

SD.2.04.e Is all machine-dependent code commented in the Y/N/NA
CSU?

Not applicable to
Ada

SD.2.05.e Are all nonstandard HOL statements commented Y/N/NA
in the CSU?

Not applicable to
Ada

B-22

[SQF95] Software Quality Framework as Implemented in QUES Release 1.5, Software
Productivity Solutions, Inc., Indialantic, FL, February 1995.

SD.2.06.e Are the attributes (usage, properties, units of
measure) of all declared variables described by
comments?

Y/N/NA Excessive (Ada
should be self-
documenting)

SD.2.07.e Do all the comments related to operations in the
CSU describe the purpose or intent of the
operation? (For example, comment states
"INCREMENT TABLE LOOK-UP INDEX", rather
than "INCREMENT A BY 1".)

Y/N/NA Excessive (Ada
should be self-
documenting)

SD.2.08.e Are the range of values and default conditions
associated with all input parameters described by
comment?

Y/N/NA Related to
AP.2.04.e

SD.3.01.e Is the unit coded using only a higher order
language?

Y/N/NA Not applicable to
Ada

SD.3.02.e Are all variable names in the CSU descriptive of
the physical or functional property they
represent? (For example, variable names
"XCOORD, YCOORD" rather than "Al, A2".)

Y/N/NA Excessive (Ada
should be self-
documenting)

SD.3.03.e Is all the code in the CSU logically blocked and Y/N/NA
indented?

Not applicable:
pretty printer can
do this

SD.3.04.e How many lines of code are there in the unit with /NA
more than one statement?

Not meaningful by
itself

SD.3.05.e How many continuation lines of code are there in
the unit?

_/NA Not meaningful by
itself

SD.3.07.e Is the CSU structured in the standard established
format?

Y/N/NA Not applicable:
pretty printer can
do this

SD.3.08.e Are all language keywords in the unit used only
with their predefined meaning? (For example, no
keywords are also used as variable names.)

Y/N/NA Not applicable to
Ada

SI.1.02.e Is the unit independent of the source of input and
destination of output?

Y/N/NA Too subjective

SI.1.03.e Is the CSU independent of knowledge of prior
processing?

Y/N/NA Too subjective

SI.1.04.e Does the CSU description/prologue include
input, output, processing, and limitations?

Y/N/NA Redundant

SI.1.05.e How many non-tasking entrances into the unit? _/NA Not meaningful by
itself

SI.1.06.e How many non-tasking exits from the unit? _/NA Not meaningful by
itself

SI.1.07.e How many unique data items are in common
blocks in this CSU?

./NA Not applicable to
Ada

SI.1.08.e How many unique common blocks in this CSU? /NA Not meaningful by
itself

B-23

[SQF95] Software Quality Framework as Implemented in QUES Release 1.5, Software
Productivity Solutions, Inc., Indialantic, FL, February 1995.

Sl.l.ll.e Does this CSU description identify all interfacing Y/N/NA
CSUs and interfacing hardware?

Redundant

SI.3.01.e How many conditional branch statements are
there in the unit? (For example, IF, WHILE,
REPEAT, DO/FOR loop, CASE.)

_/NA Not meaningful by
itself

SI.3.02.e How many unconditional branch statements are /NA
there in the unit? (For example, GOTO, CALL,
RETURN.)

Not meaningful by
itself

SIAOl.e Is the unit's flow of control from top to bottom
(i.e., control does not erratically jump)?

Y/N/NA Not applicable to
Ada

SI.4.03.e How many negative boolean and compound
boolean expressions are used in the unit?

SI.4.05.e How many loops have unnatural exits? (For
example, gotos exiting out of loops, return
statements.)

_/NA /

_/NA

SI.4.06.e How many iteration loops are used in the unit
(DO/FOR loops)?

_/NA

SI.4.07.e In how many iteration loops are indices modified
to alter the fundamental processing of the loop?
(Guaranteed value of 0 for Ada.)

_/NA

SI.4.08.e Is the CSU free from all self modification of code? Y/N/NA
(For example, the unit doesn't alter instructions,
overlays of code, etc.)

SI.4.09.e How many statement labels are used in the unit,
excluding labels for format statements?

_/NA

SIAlO.e What is the maximum nesting level in the unit? _/NA

SI.4.11.e How many total branches (conditional and
unconditional) are used in the unit?

_/NA

SI.4.12.e How many data declaration statements are there /NA
in the unit?

SI.4.13.e How many data manipulation statements are /NA
there in the unit?

SI.4.14.e How many total data items (local and global) are _/NA
used in the unit?

SI.4.15.e How many local data items are referenced locally /NA
in the unit? (For example, variables declared
locally and value parameters.)

Too subjective

Not meaningful by
itself

Not applicable to
Ada

Not applicable to
Ada

Not meaningful by
itself

Not meaningful by
itself

Not meaningful by
itself

Not meaningful by
itself

Not meaningful by
itself

Not meaningful by
itself

Redundant with
CP.1.06.e

B-24

[SQF95] Software Quality Framework as Implemented in QUES Release 1.5, Software
Productivity Solutions, Inc., Indialantic, FL, February 1995.

SI.4.16.e Does each data item in the CSU have a single Y/N/NA
use? (For example, each array serves only one
purpose.)

Not applicable to
Ada

SI.4.17.e Is this CSU coded according to the required
programming standard?

Y/N/NA Too vague:
standard not
specified

SI.5.01.e How many data items are used as input to the /NA
unit?

Not meaningful by
itself

SI.5.02.e How many data items are used for output by the
unit?

./NA Not meaningful by
itself

SI.5.03.e How many parameters in the unit's calling
sequence return output values?

./NA Not meaningful by
itself

SI.5.04.e Does the unit perform a single, non-divisible
capability?

Y/N/NA Too subjective

SI.6.01.e How many unique operators are in the unit? _/NA Not meaningful by
itself

SI.6.02.e How many unique operands are in the unit? _/NA Not meaningful by
itself

SI.6.03.e How many total operands are in the unit? _/NA Not meaningful by
itself

ST.l.Ol.e How many data items are in this unit's interface /NA
(i.e., data items used to input or output data to
the unit)?

Not meaningful by
itself

ST.1.02.e How many global data items in this CSU's /NA
interface are not adequately commented (i.e., lack
comments regarding the purpose, type,
limitations of the data)?

Redundant

ST.1.03.e How many interface data items are in the unit
with negative qualification logic? (For example,
boolean values that return "true" upon failure
rather than success.)

_/NA /

ST.l.Ol.e Is the CSU interface established solely by Y/N/NA
arguments in the calling sequence parameter list
(i.e., is the CSU free from references to global
data)?

Redundant

ST.1.05.e Does the CSU modify the internal code or data of Y/N/NA
other CSUs?

Not applicable to
Ada

ST.2.01.e How many unique execution paths are in the
unit, including those caused by a "raise"
statement?

_/NA Not meaningful by
itself

ST.2.02.e How many conditional branch statements are in /NA
the unit? (For example, IF, WHILE, EXIT WHEN,
CASE.)

Not meaningful by
itself

B-25

[SQF95] Software Quality Framework as Implemented in QUES Release 1.5, Software
Productivity Solutions, Inc., Indialantic, FL, February 1995.

ST.2.03.e How many other units are called by this unit?
(For example, calls to other functions, generics,
units, and tasks.)

_/NA Not meaningful by
itself

ST.2.04.e How many iteration loops are there in the unit?
(For example, DO/FOR loops.)

_/NA Not meaningful by
itself

ST.2.05.e Are there comments regarding the CSUs called
by this CSU and the CSUs which call this CSU?

Y/N/NA Redundant

ST.3.04.e Is temporary storage (work space reserved for
intermediate or partial results) used only by this
CSU during execution (i.e., not shared with other
CSUs)?

Y/N/NA Not applicable to
Correctness or
Understandability

ST.3.05.e Does the CSU mix the management of primary
and secondary storage resources with the
management of data within the storage areas?
(For example, an executive CSU that allocates
storage for process, and controls what data can be
accessed during process execution?)

Y/N/NA Not applicable to
Correctness or
Understandability

ST.4.05.e Does this unit have a single entrance (all units
calling this unit must enter at the same location)?
(In Ada, all non-tasking units will result in a
guaranteed "Y".)

Y/N/NA Not applicable to
Ada

ST.4.06.e Does this CSU's communication with all
interfacing CSUs pass only data parameters (i.e.,
does not pass any control elements)?

Y/N/NA Not applicable to
Correctness or
Understandability

ST.5.01.e Is the CSU free from unnecessarily recomputing
the same value?

Y/N/NA Not applicable to
Correctness or
Understandability

ST.5.02.e Is the CSU free from statements which cannot be Y/N/NA
executed?

Checked with
automated tool

ST.5.03.e Is the meaning of each data item consistent
throughout the CSU (i.e., the use associated with
each data item does not change)?

Y/N/NA Redundant with
CS.2.14.e

ST.5.04.e Is the CSU free from unnecessary intermediate Y/N/NA
data items?

Not applicable to
Correctness or
Understandability

VS.l.Ol.e How many execution paths are there in the unit? _/NA Not meaningful by
itself

VS.1.03.e How many total input parameters are there in the /NA
unit?

Not meaningful by
itself

B-26

Code Inspection Checklist for Ada

Data Collection Form

B-27

Identifier Question Answer
• Computational •

C.01.U For functions that perform computations, are accuracy tolerances
documented?

Yes / No / NA

C.02.C Do all computations use variables with consistent types, modes, and
lengths? (e.g., no boolean variables in arithmetic expressions, or
mixed integer and floating-point)?

Yes / No / NA

C.03.C Are all expressions free from the possibility of an underflow or
overflow exception?

Yes / No / NA

C.04.C Are all expressions free from the possibility of a division by zero? Yes / No / NA

C.05.C Is the order of computation and precedence of operators correct in all
expressions?

Yes / No / NA

C.06.C Are all expressions free from invalid uses of integer arithmetic,
particularly divisions?

Yes / No / NA

C.07.C Are all computations free from non arithmetic variables? Yes / No / NA

C.08.C Are all comparisons between variables of compatible data types,
modes, and lengths?

Yes / No / NA

C.09.C Do all comparisons avoid equality comparison of floating-point
variables?

Yes / No / NA

C.10.C Is the code free from assignment of a real expression to an integer
variable?

Yes / No / NA

C.ll.C Are all bit manipulations correct? Yes / No / NA

• Data •
D.01.C Are all data items referenced? Yes / No / NA

D.02.U Do all references to the same data use single unique names? Yes / No / NA

D.03.C Are all character strings complete and correct, including delimiters? Yes / No / NA

D.04.C Are illegal input values systematically handled? Yes / No / NA

D.05.C Are all variables set or initialized before referenced? Yes / No / NA

D.06.C Are all array indexes integers? Yes / No / NA

D.07.C For all references through pointer variables, is the referenced storage
currently allocated?

Yes / No / NA

D.08.C Are all storage areas free from alias names with different pointer
variables?

Yes / No / NA

D.09.C Are all variables correctly initialized? Yes / No / NA

D.10.C Are all variables assigned to the correct length, type, storage class
and range?

Yes / No / NA

B-28

D.ll.U Is the code free from variables with similar names (e.g., VOLT and
VOLTS)

D.12.C

D.13.U

D.14.U

D.15.C

D.17.U

I.01.C

I.02.C

I.03.C

I.04.C

I.05.U

I.06.U

I.07.U

I.08.C

I.09.C

I.10.C

I.11.C

I.12.C

I.13.U

I.14.C

I.15.C

Are all indexes properly initialized?

Are all data declarations commented?

Are all data names descriptive enough?

Are constant values used only as constants and not as variables?

D.16.C For all arrays, is the attribute 'RANGE' used instead of numeric
literals?

Are error tolerances documented for all external input data?

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

• Interface •

Are all propagated exceptions declared as visible and documented?

Are all propagated exceptions handled (not raised) by the calling
unit?

Are reasonable ranges declared for all output values?

For all global variables, is their use justified, and are they
documented?

Are all subprogram parameters modes shown and usage described
via comments?

Does the prologue document all side effects, such as propagated
exceptions?

Are there any interface data items with negative qualification logic
(e.g., boolean values that return "true" upon failure rather than
success)?

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Do all units systems of formal parameters match actual parameters
(such as degrees vs. radians, or miles per hour vs. feet per second)?

Are all functions free from modification of input parameters?

Are global variables consistently used in all references?

Are files opened before use and closed when finished?

Are all input parameter variables referenced? Are all output values
assigned?

Does each unit have a single function, and is it clearly described?

Are all functions free from side effects?

Is there a single entry and a single exit?

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

B-29

Logic

L.01.C Are all negative boolean and compound boolean expressions correct? Yes / No / NA

L.02.C For all case statements, is the domain partitioned exclusively and
exhaustively?

Yes / No / NA

L.03.C Are all indexing operations and subscript references free from off-by-
one defects?

Yes / No / NA

L.04.C Are all comparison operators correct? Yes / No / NA

L.05.C Are all boolean expressions correct? Yes / No / NA

L.06.C Is the precedence or evaluation order of boolean expressions correct? Yes / No / NA

L.07.C Do the operands of boolean expressions have logical values (0 or 1)? Yes / No / NA

L.08.C Does every loop eventually terminate? Yes / No / NA

L.09.C Is the program free from goto statements? Yes / No / NA

L.10.C Are all loops free from off-by-one defects (i.e., more than one or
fewer than one iteration)?

Yes / No / NA

L.11.C Are all case statements free from others branches? Yes / No / NA

L.12.C Are all decisions exhaustive? Yes / No / NA

L.13.C Are end-of-file conditions detected and handled correctly? Yes / No / NA

L.14.C Are end-of-line conditions detected and handled correctly? Yes / No / NA

L.15.C Do processes occur in the correct sequence? Yes / No / NA

L.16.C Are all loops free from unnecessary statements? Yes / No / NA

L.17.C Are all loop limits correct? Yes / No / NA

L.18.C Are all branch conditions correct? Yes / No / NA

L.19.C Are loop index variables used only within the loop? Yes / No / NA

L.20.C Are all loops free from loop index modification? Yes / No / NA

L.21.C Is all loop nesting in the correct order? Yes / No / NA

L.22.U Do all loops have single exit and entry points? Yes / No / NA

L.23.U For all nested loops, are loops and loop exits labeled? Yes / No / NA

Other

O.01.U Is the prologue complete and correct? Yes / No / NA

O.02.C Are all printed or displayed messages free from grammatical or
spelling errors?

Yes / No / NA

O.03.U Does the code follow basic structured programming techniques? Yes / No / NA

O.04.U Are all assumptions documented? Yes / No / NA

O.05.C Is the code written only in Ada? Yes / No / NA

B-30

List of Sources for the C++ Checklist in this Appendix:

[BAL92] Baldwin John T. "An Abbreviated C++Code Inspection Checklist." October 27,1992. http:
//www.ics.hawaii.edu/~johnson/FTR/Bib/Baldwin92.html.

[DST96] "C Code Review Checklist." http://dstc.qut.edu.au/~baker/www/sqg/C_Checklist.html.

[FAG96] Fagan, Michael. "OLP Software Inspection." http://www-
ols.fnal.gov:8000/ols/www/inspection.html#focus.

[FAU94] Faure, John. "Draft Standards for C++ Usage." Internal corporate software development
standard for Software Productivity Solutions, Inc. September 8,1994.

[GER95] Gerisch, Margaret. "Code Review Checklist."
http://www.oswego.edu/~more/html/checklist2.html.

[HUM95] Humphrey, Watts. A Discipline For Software Engineering. SEI Series in Software Engineering.
1995.

[KOE92] Koenig, Andrew. "Checklist for Class Authors." The C++ Journal. Volume 2. No. 1.1992.

[KOE95] Koenig, Andrew. "Working Paper for Draft Proposed International Standard for Information
System—Programming Language C++." Doc No. X3J16/95-0185 WG21/N0785. September
26,1995.

[MCC96] McCabe, Thomas. "McCabe OO Tool." Presentation materials from On-Site Tutorial. 1996.

[POT94] Potts, Stephen and Timothy S. Monk. Borland C++ By Example. Que Corporation. ISBN: 1-
56529-756-3. 1994.

[SOF95] Software Productivity Solutions, Inc. "Task Area: Software Quality Framework." Interim
Technical Report. Data & Analysis Center for Software, Subcontract No. P48124 under Prime
Contract No. F30602-92-C-0158. October, 1995.

[SOF96] Software Productivity Solutions, Inc. "Certification of Reusable Software Components:
Volume 5, Certification Field Trial." Contract No. F30602-94-C-0024. United States Air Force,
Rome Laboratory. Rome, NY. June 24,1996.

[VAN95] Ger van Diepen. "General C++ Coding Standard at the NFRA."
http://www.nfra.nl/~qvd/seg/CppStdDoc.html.

B-31/B-32

Code Inspection Checklist for C++

Data Collection Form

B-33

Identifier Question Answer

Computational

C.01.U For functions that perform computations, are accuracy tolerances
documented?

For functions that perform computations, are accuracy tolerances
documented for variable types that hold data?

Yes / No / NA

C.02.C Do all computations use variables with consistent types, modes, and lengths
(e.g., no boolean variables in arithmetic expressions, or mixed integer and
floating-point)?

Do all computations use variables with consistent types and/or type
casting, values, and lengths? (i.e., no boolean variables in arithmetic
expressions)

If variable types are mixed, are expected outcomes anticipated and
external to the program block?

Yes / No / NA

C.03.C Are all expressions free from the possibility of an underflow or overflow
exception?

Yes / No / NA

C.04.C Are all expressions free from the possibility of a division by zero? Yes / No / NA

C.05.C Is the order of computation and precedence of operators correct in all
expressions?

Yes / No / NA

C.06.C Are all expressions free from invalid uses of integer arithmetic, particularly
divisions?

Yes / No / NA

C.07.C Are all computations free from non-arithmetic variables? Yes / No / NA

C.08.C Are all comparisons between variables of compatible data types, modes, and
lengths?

Are all comparisons between variables of compatible data types, type
cast data types, and lengths?

Yes / No / NA

C.09.C Do all comparisons avoid equality comparison of floating-point
variables?

Yes / No / NA

C.10.C Is the code free from assignment of a real expression to an integer
variable?

Yes / No / NA

C.ll.C Are all bit manipulations correct? Yes / No / NA

C.12.C Is the "%" modulus operator used correctly (i.e. not intended as a
percentage)?

Yes / No / NA

C.13.C Is the "/" division operator used to accommodate a discarded
remainder?

Yes / No / NA

C.14.C Are compound operators assigned correctly? Yes / No / NA

B-34

• Data •

D.Ol.C Are all data items referenced? Yes / No / NA

D.02.U Do all references to the same data use single unique names? Yes / No / NA

D.03.C Are all character strings complete and correct, including delimiters?

Are all character strings and character arrays complete and correct,
including delimiters (i.e., value is assigned and enough elements are
reserved to hold entire character string and terminating null zero)?

Yes / No / NA

D.04.C Are illegal input values systematically handled? Yes / No / NA

D.05.C Are all variables set or initialized before referenced? Yes / No / NA

D.06.C Are all array indexes integers? Yes / No / NA

D.07.C For all references through pointer variables, is the referenced storage
currently allocated?

Yes / No / NA

D.08.C YCD / No / NA

D.09.C Are all variables correctly initialized?

Are all variable and constants correctly initialized?

Yes / No / NA

D.IO.C Are all variables assigned to the correct length, type, storage class and
range?

Are all variables and constants assigned to the correct length, type,
sign, precision, and range?

Yes / No / NA

D.ll.U Is the code free from variables with similar names (e.g., VOLT and
VOLTS)?

Is the code free from variables and constants with similar names
(e.g., VOLT and VOLTS)?

Yes / No / NA

D.12.C Are all indexes properly initialized?

Are all indexes properly initialized (i.e., start at zero)?

Yes / No / NA

D.13.U Are all data declarations commented? Yes / No / NA

D.14.U Are all data names descriptive enough? Yes / No / NA

D.15.C Are constant values declared as constants and not as variables?

Are constant values used as numbers, characters, words, or phrases?

Yes / No / NA

D.16.C For all arrays or enumeration types, are ranges used for each data
type instead of numeric literals?

Yes / No / NA

D.17.U Are error tolerances documented for all external input data? Yes / No / NA

D.18.U Are variable names in lower case as is the customary convention? Yes / No / NA

D.19.U For object-oriented code, are the first letters of class names
capitalized as is the customary convention?

Yes / No / NA

B-35

D.20.U Are upper case letters used for "#define" directives as is the
customary convention?

Yes / No / NA

D.21.U Are "#define" statement used judiciously? Yes / No / NA

D.22.C Are assignment equals "=" and equals to "==" operators used
correctly?

Yes / No / NA

D.23.C Have assignment expressions been included in the same condition as
the logical test?

Yes / No / NA

D.24.U Are parenthesis used in the expressions of the "sizeof" operator (i.e.,
in "sizeof data", parentheses is optional, but it is good programming
to include ();

Are parenthesis used in the expressions of the "sizeof (data type)
where parentheses are required?

Yes / No / NA

D.25.C Are bitwise operators, bitwise shift, and compound bitwise shift
used correctly (i.e., &, vertical bar, A, ~, », «, «=, »=)?

Yes / No / NA

D.26.C For object-oriented components, do classes have any virtual
functions?

If so, is the destructor non-virtual?

Yes / No / NA

D.27.C For object-oriented components, do classes have all three necessary
copy-constructors, assignment operators, and destructors?

Yes / No / NA

D.28.C For object-oriented components, do all structures and classes use the
"." reference?

Yes / No / NA

D.29.C Are all pointers initialized to "null", deleted only after "new", and
new pointers deleted after use?

Yes / No / NA

D.30.C Are names used within the declared scope? Yes / No / NA

D.31.C For object-oriented components, is each class declared and
implemented in a single file (i.e., with the exception of helper classes
packaged with the primary file)?

Yes / No / NA

D.32.C Are function arguments free from variable argument lists (...) to
avoid the inherently type-unsafe?

Yes / No / NA

D.33.U Is multiple inheritance avoided? Yes / No / NA

D.34.U Are "return" types always provided, even if "void"? Yes / No / NA

D.35.C For object-oriented components, does every constructor initialize
every data member in its class?

Yes / No / NA

D.36.C For object-oriented components, do assignment operators correctly
handle assigning an object to itself?

Yes / No / NA

D.37.C Is "delete []" used when deleting an array to determine the size of
the array being deleted?

Yes / No / NA

D.38.U For object-oriented components, are object fine grained? Yes / No / NA

B-36

D.39.U For object-oriented components, is the object encapsulated (i.e.,
highly related methods and data isolated)?

Yes / No / NA

D.40.U For object-oriented components, is there low dependency between
objects?

Yes / No / NA

D.41.U For object-oriented components, do objects exhibit high fan in? Yes / No / NA

• Interface •

m±G Yes / No / NA

£G2T€ Yes / No / NA

I.03.C Are reasonable ranges declared for all output values? Yes / No / NA

I.04.C For all global variables, is their use justified, and are they documented? Yes / No / NA

I.05.U Are all subprogram parameter modes shown and usage described via
comments?

Are all subprogram parameter types shown and usage described via
comments?

Yes / No / NA

I.06.U Does the prologue document all side effects, such as propagated exceptions?

Does the prologue document all side effects?

Yes / No / NA

I.07.U Are the interface data items free from negative qualification logic (e.g.,
boolean values that return "true" upon failure rather than success)?

Yes / No / NA

I.08.C Do all units systems of formal parameters match actual parameters (such as
degrees vs. radians, or miles per hour vs. feet per second)?

Yes / No / NA

I.09.C Are all functions free from modification of input parameters? Yes / No / NA

I.10.C Are global variables consistently used in all references? Yes / No / NA

I.11.C Are files opened before use and closed when finished?

Are files opened immediately prior to access and closed as soon as
done?

Yes / No / NA

I.12.C Are all input parameter variables referenced? Are all output values
assigned?

Yes / No / NA

I.13.U Does each unit have a single function, and is it clearly described? Yes / No / NA

I.14.C Are all functions free from side effects? Yes / No / NA

I.15.C Is there a single entry and a single exit? Yes / No / NA

I.16.C Does the program and all its functions end with a return statement? Yes / No / NA

I.17.C Does each return have a closing brace (i.e., after the end of a block,
the end of the main function [main ()], and the end of the program?

Yes / No / NA

I.18.C Are the widths and formats of numbers specified correctly for
printing?

Yes / No / NA

I.19.C Are the most frequently executed statements in a "switch" arranged
at the top of the list to improve the efficiency of the code?

Yes / No / NA

B-37

I.20.C

I.21.U

I.22.C

I.23.C

I.24.C

I.25.C

I.26.C

I.27.C

I.28.C

I.29.C

L.01.C

L.02.C

L.03.C

L.04.C

L.05.C

L.06.C

L.07.C

L.08.C

L.09.C

L.IO.C

L.11.C

L.12.C

If "ios::out" is used to open a file for writing (i.e., C++ creates the
file), does it overwrite the filename that exists?

Is code free from "non-standard" syntactic constructs such as
unconventional preprocessor directives?

Is passing objects by value, or by reference avoided (e.g., where
implicit conversions result in member wise copying)?

Are dynamically allocated application objects passed as pointers?

To decrease performance overhead, are local variables created and
assigned at once?

Are files properly declared, opened, and closed?

Is a file closed in the case of an error return?

Are all "include" statements complete?

Are "inline" functions used only when performance is needed?

Are "new" and "delete" used to allocate and deallocate storage
rather then "malloc" and "free" (i.e., which are type-unsafe)?

Have timing, sizing, and throughput been addressed?

Logic

Are all negative boolean and compound boolean expressions correct?

For all case statements, is the domain partitioned exclusively and
exhaustively?

For all "switch" statements, is the domain partitioned exclusively
and exhaustively?

Are all indexing operations and subscript references free from off-by-one
defects?

Are all comparison operators correct?

Are all boolean expressions correct?

Is the precedence or evaluation order of boolean expressions correct?

Do the operands of boolean expressions have logical values (0 or 1)
or a non zero value which is interpreted as true?

Does every loop eventually terminate?

Is the program free from goto statements?

Are "gotos" used judiciously or can other code be substituted?

Are all loops free from off-by-one defects (i.e., more than one or fewer than
one iteration)?

Are all switch statements free from "others" branches?

Are all decisions exhaustive?

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

B-38

L.13.C Are end-of-file conditions detected and handled correctly? Yes / No / NA

L.14.C Are end-of-line conditions detected and handled correctly? Yes / No / NA

L.15.C Do processes occur in the correct sequence? Yes / No / NA

L.16.C Are all loops free from unnecessary statements? Yes / No / NA

L.17.C Are all loop limits correct? Yes / No / NA

L.18.C Are all branch conditions correct? Yes / No / NA

L.19.C Are loop index variables used only within the loop? Yes / No / NA

L.20.C Are all loops free from loop index modification? Yes / No / NA

L.21.C Is all loop nesting in the correct order? Yes/No/NA

L.22.U Do all loops have single exit and entry points? Yes / No / NA

L.23.U For all nested loops, are loops and loop exits labeled? Yes / No / NA

L.24.C Is the ternary conditional operator "?:" used correctly? Yes / No / NA

L.25.C Are the increment and decrement operators properly used in postfix
and prefix order?

Yes / No / NA

L.26.U Do braces surround the body of a "for" and "while" loop even
though it only has one statement (i.e., exhibiting good programming
practices)?

Yes / No / NA

L.27.U Are the expected executions anticipated with "while", "do while",
and "if while", even though the code will compile?

Yes / No / NA

L.28.C Are "exit (status)", "break in case", and "break and continue" used to
correctly exit the program or exit the loop?

Yes / No / NA

L.29.C Are counters initialized to zero and the increment operator (i.e.,
"++") used appropriately?

Yes / No / NA

L.30.C When "for" loops are used, is the intent for the condition to be tested
at the top of the loop (i.e., is the condition ever "True" so that the
loop executes)?

Yes / No / NA

L.31.C Is redundancy eliminated in "for" loops for better efficiency? Yes / No / NA

L.32.C Do all "switch" statements contain a default branch to handle
unexpected cases?

Yes / No / NA

L.33.C Does logic handle bad input as well as good input? Yes / No / NA

• Other •

O.01.U Is the descriptive prologue complete and correct? Yes / No / NA

O.02.C Are all printed or displayed messages free from grammatical or spelling
errors?

Yes / No / NA

O.03.U Does the code follow basic structured programming techniques? Yes / No / NA

O.04.U Are all assumptions documented? Yes / No / NA

B-39

O.05.C Is the code written only in Ada?

Is the code written only in C or C++?

Yes / No / NA

O.06.U Is each variable declared on a single line to improve readability and
maintainability?

Yes / No / NA

O.07.U Does code contain mapping to parent documents, or functional
specifications?

Yes / No / NA

B-40

Appendix C - Survey Data

C-l/C-2

This appendix contains the survey checklists and the results of interviews with survey
participants.

Survey Checklists

Reuser

1) How would you describe your role in the organization?

- Primary responsibilities

- Official title
Length of time in this position

Formal education and training
- Professional experience (assignments and application areas)

2) Describe your organization's interest and involvement in software reuse.

- Mission or business objective
- Standards and policies applicable to the software development process

- Requirements for reuse
Number of developers

- Platform support
3) Can you describe the application area(s) you work in?

Application-driven characteristics and quality requirements

Testing requirements and standards
Programming languages used

- Software technologies used in the domain (e.g., databases, graphical user
interfaces, communications systems)

4) Can you describe your current project?
Individual's development responsibilities

Resource constraints (time, funding, staff)

- Software reused
5) Can you describe your organization's reusable asset collection?

- Number of assets

Types of assets

Quality of assets
- Frequency of individual's use
- Number of assets individual has obtained and used

C-3

Last asset obtained and reused

- Direct costs for obtaining and/or reusing assets

Use of other repositories or library systems

6) Can you describe your search and retrieval process?

Searching process and mechanism

- Process for determining asset functionality

Process for determining asset quality

- Additional review performed after obtaining asset

- Additional testing performed after obtaining asset

- Special tools used in obtaining and /or reusing the asset

7) Can you describe what makes a "good" asset?

Minimum requirements

Additional capabilities or qualities desired in assets

Reasons for not reusing an asset

Successful reuse experiences

Unsuccessful reuse experiences

Satisfaction with assets provided

8) What would help you reuse more?

Additional or different assets

Higher quality assets

- Additional testing or certification desired

Ability to pay for assets or services

- Feedback individual has provided to appropriate staff

- Plans for continued use of the asset collection

Would asset certification appeal to the reuser

- Is there an incentive for reusing assets (does certification play a role)

C-4

Asset Developer
1) Please describe your organization and its interest and involvement in software

reuse.

Mission or business objective

- Commitment to specific reuse goals and objectives

Number of reusable asset developers

Number of asset reusers

2) Why do you develop reusable assets?

- Part of a special reuse group within organization

- Provides assets as a service to other external organizations (e.g., free or on
cost-reimbursement basis)

- Provides assets for fee to other external organizations

- Building reusable assets for a particular project

Commercial supplier of assets

3) How would you describe your role in the organization?

Primary responsibilities

- Official title

- Length of time in this position

Formal education and training

- Professional experience (assignments and application areas)

4) Can you describe the application area(s) you work in?

Application domains

- Application-driven characteristics and quality requirements

- Types of assets
- Software technologies used in the domain (e.g., databases, graphical user

interfaces, communications systems)

5) Can you describe the development of reusable assets?

- What are the reuse goals

- Is there an incentive for developing reusable assets

- Process for identifying reuse needs or opportunities

- Specific standards or guidelines applied to the development process

- Process for determining and measuring quality requirements

Methods and tools used for testing

- Collection of metrics during development

- Availability of documentation on development process (can we get a copy)

C-5

Procedure for making assets available for reuse

- Satisfaction with development process

Identification of changes to be made in development process

6) Can you describe the automated environment you use in your work?

- Special tools used to compose, generate, or synthesize assets

Programming languages used

Any other tools

7) Is there a lot of interaction with users of the assets?

- Joint identification of requirements, architectures, interface design

Field testing of assets

Feedback on quality and functionality

- Requests for fixes

- Requests for additional testing

- What increases the incentive for reusing assets

C-6

Librarian

1) Please describe your organization and its interest and involvement in software
reuse.

- Mission or business objective

Commitment to specific reuse goals and objectives

Number of reusable asset developers

- Number of asset reusers

2) How would you describe your role in the organization?

Primary responsibilities

- Official title

Length of time in this position

- Formal education and training (approach this question carefully)

Professional experience (assignments and application areas)

3) Can you describe your typical workday?

- Amount of time spent analyzing submitted assets and their associated
information

- Amount of time spent certifying/evaluating assets (if part of responsibility)

Amount of time spent cataloguing assets

- Amount of time spent updating assets

4) Can you describe your staff?

Number of staff employed to maintain the collection of assets

Training provided to staff

- Adequacy of staffing (numbers, skill levels, training)

- Status of funding for staff (stable, increasing, decreasing)

- Ability to add staff

5) Is there a lot of interaction required with individuals outside of your staff?

Method for acquiring new assets

- Method for dealing with assets that don't meet requirements

Interaction with domain experts and/or asset developers

Interaction with certification engineers

Interaction with users

- How are other individuals notified of the assets

6) Can you describe your collection of reusable assets?

- Number of assets

Types of assets

C-7

- Application domains

Application-driven characteristics and quality requirements

- Platform support

- Who provides the assets and why

- Standards and policies applicable to the software development process

- Frequency of new submittals

Frequency of updates or modifications to assets

Motivation for users to access and obtain assets from this collection

Formal (written) description of collection (can we get a copy)

7) Can you describe your users?

- Who are the users

- Geographic distribution of user population

- How many users

- Frequency of new users

- Collection of usage metrics

- Availability of documentation on usage (can we get a copy)

8) Can you describe the supporting automation (e.g., library system) for the asset
collection

- Software used

- Identification as commercial product, GFE, or custom product(s)

- Capability for integration with other tools or systems

Availability of user documentation for supporting automation (can we get a
copy)

Tools other than "library system" used to maintain collection

9) Can you describe your certification/evaluation process?

- Minimum requirements for asset submittal

- Availability of instructions for submitting assets (can we get a copy)

Method for determining level of certification required for an asset

- Average effort spent certifying an asset

- Availability of documented certification procedures (can we get a copy)

- Adequacy of time spent on certification activities

- User feedback received with regard to certification activities, results, or
information

Identification of desired changes in process or supporting automation

Motivation for changing process and/or supporting automation

C-8

10) What kind of feedback have you received from users?

- Satisfaction with quality and features of assets found

- Services and/or information that users would like more of

11) How do you measure the successof your reuse effort?

- Specific objectives that are measured

Mechanisms for measurement of success

- What are the reuse goals

12) What kinds of changes, if any, might occur over the next three years?

- Different types of assets

- Different user populations

Different services and/or automation

C-9

Certification Engineer

1) Please describe your organization and its interest and involvement in software
reuse.

Mission or business objective

Commitment to specific reuse goals and objectives

Number of reusable asset developers

Number of asset reusers

2) How would you describe your role in the organization?

Primary responsibilities

- Official title

Length of time in this position

Formal education and training

Professional experience (assignments and application areas)

- Specific training in certification, quality control, verification and validation

Is there a perceived need for certification

3) Can you describe your typical workday?

- Amount of time spent analyzing submitted assets and their associated
information

Amount of time spent determining how to certify assets

Amount of time spent certifying the assets

Amount of time documenting process and/or results

4) Is there a lot of interaction required with other individuals?

- Method for dealing with assets that don't meet certification requirements

- Interaction with librarian

Interaction with domain experts and/or asset developers

- Interaction with users

How is the certification information relayed to other individuals

Where do the assets to certify come from

5) Can you describe the assets you certify?

Application domains

Application-driven characteristics and quality requirements

- Types of assets

Volume of assets certified

Where in the software lifecycle is certification being performed

C-10

What percentage of assets are being certified and how thorough is the
certification

6) Can you describe the certification process you follow?

- Minimum requirements for asset

- Use (in certification) of information submitted with asset

- Receipt and use of problem reports, field usage, or user feedback on asset
quality

Method for determining level of certification required for an asset

- Application-specific model or information used to set requirements for
certifying an asset

- Process defined such that different individuals performing same activity
would receive same results

- Availability of documented certification procedures

- Testing and/or analysis techniques used

- Average effort spent in certifying an asset

- Description of any work product(s) that result from certifying an asset

- Variation in process based on type of asset

- Most recent asset certified and length of time required to certify it

- Ability to change the process

7) Can you describe the automated environment you use in your work?

- Activities that are automated

- Software used

- Use of special testing or measurement software

- Use of software for managing asset collection

- Activities that are not automated

8) Is the certification process satisfactory?

- Adequacy of level of certification

Adequacy of time spent on certification activities

- Adequate automation provided to support certification process

User feedback received with regard to certification activities, results, or
information

Identification of desired changes in process or supporting automation

Motivation for changing process and /or supporting automation

C-ll

Interviews

This section contains the interview summaries. Any information pertaining to the
identity and company of each participant has been omitted.

Participant 1

This participant works in the domain of command and control system maintenance. He
is a project manager in a corporation that performs rudimentary reuse. Software
engineers, during development, ask other software engineers in their area for assets that
meet certain requirements. There is no master list or repository of software assets.
Reuse is very informal. To ensure that assets are reused, there is a checklist that the
developers use during development. One item on this checklist requires that the
developers look for assets prior to developing them. Other than this checklist, there is
no incentive for reuse.

Each project has an Independent Testing Group (ITG) that handles asset certification
and testing. Certification, to the ITG, means that an asset has been tested to meet its
requirements. Prior to delivering a build to the customer the ITG is given the software
along with a test plan. The ITG takes the software and tests it against its requirements
using data based upon the developer's test plan. Every asset that is delivered to the
customer, reused or new, is tested against its requirements. If an asset fails testing, it is
tested with the programmer present. If it fails again, the customer is notified.

The ITG does not maintain test information nor does it keep track of the assets that have
been tested after the project ends.

Participant 2

Participant 2 is the division point of contact for reuse in his division. He is currently
setting up a domain independent reuse framework. The reuse framework will
encompass a broad set of domains including law enforcement and weather. Since the
framework is in its early stages, there are a lot of specifics that still need to be defined.
He wants to use the same software maturity index that the DOD uses: that defined by
the Defense Software Repository System . He is also setting up a software maturity
process where a quality assurance team and a configuration control board will
determine where an asset will fit in the software maturity index.

There is, in place, an automated domain independent library system from which
reusers can browse and retrieve assets. Developers that submit assets will also submit
verification that QA has been performed on the asset. The participant is setting up
software development classes and software reuse classes for the software developers.

C-12

The participant thinks that accessibility to reusable components is more important than
certification. A level of certification is important, but having potentially reusable assets
in a location accessible to the software engineers is more important.

Participant 3

Participant 3 is working to apply Smalltalk technologies to conventional business
systems. She is trying to apply the reusability that Smalltalk provides to their
development efforts. Traditional CASE technology developed assets are taken and
object-oriented wrappers are placed around them. She is examining the large classes of
objects that can be found in the commercial market for reuse suitability.

An asset development team has been created to build reusable objects. The team is
trying to understand platform independent object management. The asset development
team is building objects within an already defined reuse framework.

Software development goes through the SEI levels of understanding: Approval To
Proceed (ATP) 1 through 4. Most objects are currently at an ATP 2 level. Test cases are
being defined so that regression testing can be performed, but they are finding it hard to
do this.

She thinks that an object's maturity is an issue, but that problems are expected to arise
during reuse, hence an object's maturity won't be a top issue. Although she does feel
that there is a need for certification tools in the reuse market, that need is less than the
need to understand how to reuse an asset.

To provide reuse information to the reuser, her reuse team is looking at ways to
respond to reusers querying the library system for objects that perform a certain
function. In addition, she is looking at ways to enable a reuser to quickly understand
the behavior of an object.

Participant 4

Participant 4 is looking at ways to get reusable assets from existing code and then
certify them. The existing assets are coming from legacy systems or previously
developed software systems independent of domain. Complexity metrics are used to
identify potentially reusable assets. Once an asset is identified, dependencies between
the asset and its environment and other assets are removed. The asset is then
documented and, eventually, a cataloguing system will be used to catalog the asset.

She is focusing on identifying assets whose outputs can be defined as a function of the
asset inputs: output = f(input). This capability is key to their certification method. A
formal specification is generated from the asset, and the correctness of the specification
is tested. Once this is done, the functional correctness of the asset will be tested. Once
the formal specification is defined, the asset can be certified. If the asset's behavior is

C-13

consistent with its formal specification, it can be certified. This method is being
developed internally and, currently, there is no documentation available.

Two levels of certification have been defined:

1) Certification checking that the formal specification and the asset are consistent

2) Certification using test cases on the asset to verify that it performs according to
its function specification.

The formal specification includes only the asset's input and output parameters. The
input set is defined as a certain type. The formal specification will map the set of
outputs to all inputs of this type. Possible inputs outside of this type will not be mapped.
The formal specification is used to raise the level of confidence that an asset does what
it is supposed to do given inputs of the expected type. Information will be stored
within the formal specification that will increase or decrease the level of confidence in
an asset.

She is working on mapping the formal specification in domain concepts so that the
reuser will see the translation of the formal specification in domain specific terms.

Participant 5

Participant 5 is performing a small test project in the reuse area. This project is being
used as a test case for their reuse procedures. He has a domain analysis and
engineering team that is building an Electronic Warfare and Intelligence domain
architecture. After the architecture is in place, they will attempt to use it to build
reusable components. The focus of their reuse technique is on the domain architecture
rather than a library system.

Since they are in the early stages of reuse, there hasn't been much thought about testing
and certification yet.

Participant 6

Participant 6 is currently creating a reuse process for his company. His application
domain is cellular applications and his company is currently at an SEI level 2.

He is looking at code, design, architecture, and requirements reuse. A library system
will be put into place to store assets.

Since he is in the early stages of design, all of this is yet to be completed.

He wants to include certification information along with the assets in the library. He
has defined an elaborate process to certify an asset. An asset will undergo four steps of

C-14

inspection prior to certification. All four steps must be successfully completed before
an asset is considered certified.

1) The asset will be tested against its specifications,

2) The asset will be analyzed to ensure that it meets company standards,

3) The asset will undergo Fagan Inspection; a static testing method used to verify
that the asset meets its requirements [FAG86],

4) The asset will be analyzed to ensure that it follows standard programming
procedures.

When adding an asset to the library, it will go through a qualification phase, cost benefit
analysis, and a certification phase to verify that it meets the criteria of the repository.

In his corporation, reusers have a monetary incentive for reusing assets. The tracking of
this information is rather complicated. When reusers check out an asset from the
library system, the life of that asset is tracked. When the system is delivered to the
customer, the software is checked for verification of reuse. The reuser is then rewarded.

Certification is viewed as an incentive for reuse. He feels that assets with higher levels
of certification are more likely to be reused.

[FAG86] Michael E. Fagan, "Advances in Software Inspections," IEEE Transactions on Software
Engineering, Vol. SE-12, No. 7, July 1986.

Participant 7

This participant works with several domains: signal processing and programming
environments. She is using reuse in the realm of a new program, but the reuse is
limited to software tools (i.e. sorting utilities), I/O, mathematical calculations, etc. The
entire application is 200,000+ lines of code. Three to four dozen Ada packages have
been developed in house and are available for reuse. Approximately 20% of the tools
that are being developed are used by more than one person.

Her company has no guidelines or incentive for reuse. Anything that a user can get "for
free" is viewed as helpful to the software development effort.

This participant is trying to set up a reuse effort with little internal support. She is
trying to set up a reuse repository to store the assets along with test information.
Unfortunately, test information is not always available to her and she is not always able
to incorporate it into the repository.

She has never thought about whether or not certification has a place in software reuse.

C-15

Participant 8

This participant is working within a single, specific, domain: Secure Operating Systems.

Her library contains design and other documentation on the asset, the asset's source,
test code, and test result information. A configuration management process documents
any asset modifications, modification rationale, review state, and current state of the
asset.

During the rebuilding of their system, all tests are re-executed to uncover latent bugs.

External assets are rarely, if ever, used due to possible royalty issues. Also, the lack of
design documentation, test information, or certification information for the asset is a
deterrent. If there were a way of ascertaining the quality of external assets she might
consider their use as she is inclined to not re-invent the wheel during development.

In the context of her application, certification is not a reuse issue because she "reuses"
code developed for previous software builds on subsequent builds.

Participant 9

Participant 9 is developing test equipment in a corporation that is trying to reach SEI
level 3. He didn't know their current SEI level, but presumed that it was 1.

For their reuse effort, they have a group of people that are surfing the Internet, looking
for assets that can be reused. They have contacted both the Army and DOD about their
reuse repositories. This group is looking for assets that have sufficient documentation
and test plans and that can be easily reused. If an asset doesn't include documentation
and testing information, the group will make a judgment call as to the suitability of the
asset for reuse. If it is suitable, documentation and test plans will be created. The group
is hoping that anything contained within a reuse library is sufficiently tested and
documented so that a level of confidence can be achieved. If the asset isn't sufficiently
tested, they'll test it themselves.

He is using Rational Rose for design and then storing the model information along with
the asset and any information pertaining to the asset in Apex. Testmate is used to
analyze the coverage of their test procedures. Additional certification tools would be
used if they would decrease certification time and cost. When asked what he would
look for in certification tools and he responded that he thinks any certification tool
should interface well with Testmate and provide complementary capabilities.

On the issue of certification, he said that he would not use a non-certified asset. His
reusers would rather use in-house assets than outside assets simply because the assets
have been tested, have sufficient test documentation, and the reusers are already
familiar with the asset.

C-16

Participant 10

Participant 10 is working in the domains of aerospace and process control.

For reuse he uses generic Ada packages that are under configuration management
(CM). He doesn't perform what we would consider reuse because he is working on a
single product. Reuse to him is reusing software previously developed and placed
under configuration management. His application is highly focused and the only real
modifications to software occur when the hardware has changed enough to require it.
Most of his work is subcontracted out and it is up to the subcontractors to identify areas
of reuse (if they use it at all).

He has no need for reusing outside software, and all internal software has already been
sufficiently tested. Certification tools would not aid his development effort.

Participant 11

Participant 11 has, in place, a repository that contains flight, C3I, and general domains
of software assets. The repository is set up using Internet, Mosaic, and the World Wide
Web. The repository is filled with assets that have been developed in-house by in-
house projects. It is the responsibility of each program to add reusable assets to the
repository.

The repository contains data that describes each asset it contains. The descriptive
examples are links to the asset's source, the name of the person that created the asset,
and keywords for the asset.

As part of their engineering process, reusers look at the assets in the repository to
identify potential reusable assets. To aid in keeping the reusers up to date on the state
of the repository, a special internal group prints a department newsletter documenting
the assets in the repository.

This same internal group is responsible for creating reusable flight and C3I assets. The
assets are designed, if possible, to be reusable across both domains.

When asked about the benefits of certification tools and asset certification, the
participant replied by stating that she thinks that, case by case, more mature assets
would, over time, be noticed in the repository. Less mature assets would be "weeded
out."

Participant 12

Participant 12 heads up a reuse effort that spans five divisions: surveillance, avionics,
countermeasures, defense systems, and information systems. Her team consists of five
people, plus herself. Each of the five are from one of the divisions.

C-17

This team meets weekly to discuss reuse issues across the company and its divisions.
This reuse effort is currently in its infancy. Most of the items that she discussed with
me will be implemented over the next year.

Rather than focus on reuse within each of the five domains, they are taking an
opportunistic approach. They have drafted a reuse library guidebook that details the
format for submitted assets.

A configuration board will be created to assess the assets that are submitted to the
library and verify that the assets follow the reuse guidelines.

The reuse library is categorized by division and can be searched using keywords. Some
effort has been spent defining the library's content, although not all of the specifics have
been detailed. Some of the information within the library is: asset name,
version/release, domain, keywords, abstract, dependencies, asset type, language,
metrics (form fit functions), security type, certification level, and the division that created
it. Unfortunately, the certification level information, although it will appear in the
library, is one of the items that hasn't been defined yet.

When asked why a reuser would choose one asset over another, and she responded that
the reuser would, most likely, choose an asset developed in their domain/division. If
the assets returned from a library query had the same division, the reuser would
probably focus on the abstract to determine which asset most closely matches the
reusers requirements.

Personally, she thinks that certification would help in reuse but she doesn't know how it
would work in "real life."

Participant 13

This participant believes that certification is the key to reuse. He is currently doing a
feasibility experiment using four to five reusable libraries of approximately 10,000 lines
of code (very approximate). He has not reached a "real world" stage for his ideas.

Assets that possess a predefined set of domain driven properties are considered
certified. These properties identify such information as how an asset handles dynamic
memory. If an asset does not meet these properties, it is not certified.

His experiment is within the domains of safety critical systems, embedded control
systems, nuclear applications, and medical applications.

Along the lines of certification, he had several responses:

• Certification is an absolutely essential element of reuse

C-18

• If you can't trust it, you won't reuse it

• Although certification can be expensive, it is the key, missing part to reuse.

Participant 14

Participant 14 works in the shuttle design, trajectory analysis, and weight estimation
domains. He is currently developing assets that are portable from one application to
another.

At this stage, reusers are responsible for finding reusable assets, but his organization is
starting to develop a reusable library. Currently they are using the Cosmic repository
as an asset library.

Documentation and test cases are maintained for their internal software. The
documentation also keeps track of asset revisions.

Unfortunately, he didn't know how certification would or could be used to benefit
reuse.

Participant 15

This participant works in a small reuse group. The domains that they work in are
electronic warfare, real-time embedded Ada systems, and command and control.

She is a member of a software engineering process group that is currently looking at
asset information and design during the asset development and analyzing the reuse
potential of the individual assets.

Their method of reuse is informal. Previous projects are searched for possible reusable
assets. Project history data is used to aid in asset selection. Reuse is looked at as a way
to reduce work and aid projects in meeting their schedules. There is no process or
incentive for reusers to seek reusable assets. For current projects, they are attempting to
build in reuse.

The engineering process group is developing a library containing the asset's code
specification (Ada) as well as its functional specification. Any of the asset's limitations
or problems will go into the header of the asset's code.

While she believes that certification information would be beneficial to reuse, she also
thinks that past test history would aid in reuse.

Participant 16

C-19

Participant 16 is working with a very focused alarm monitoring application. Because of
her highly focused application domain, she only reuses assets from previous
application builds.

The library system that she uses has limited search capabilities and the asset
information is limited to a brief description of the asset along with the assets header.
Reusers search for assets using keywords.

No quality or test information pertaining to the asset is stored in the library.

When asked about certification, she responded favorably stating that it would be a good
idea and that she could see how it would be useful. But, until this conversation, she
had never thought about it.

Participant 17

Participant 17 builds stand-alone products in the missile and missile launcher domains.
Currently they are at SEI level 1 and are working on obtaining a level 2 rating. Much of
the reuse information he discussed is currently being defined and implemented.

He is performing domain analysis and building a reuse framework for his company.

He is examining ways to develop naturally reusable assets. These assets will be placed
within a cataloguing system and will be identified by their requirements.

He is seeking reuse tools that can sit atop the CM system and development process.
This tool will be used to search for assets within the CM system given a set of
requirements.

The information within the library system will be very detailed. The source code along
with test code and requirements information will be contained within the library.
Assets that have been checked out will be tracked. If they are used, this will be noted
by the library system. If they are unused, this, too, will be noted.

Much of an asset's information will be tracked, documented, and maintained after its
inclusion in the reuse library: information ranging from bug fixes to the domain(s) it has
been successfully reused in.

Participant 17 stated that no asset would be used without some level of certification.
Without a test suite, documentation detailing the asset's errors and subsequent fixes,
and without a requirements specification for the asset, he would not reuse it. All of this
information would have to be created for assets not having it. It would be less effort to
build the asset from scratch.

Participant 18 c-20

This participant is in the process of setting-up a reuse repository in his company. In
addition to software assets, the repository will include frameworks, documents, and
tools. The application domains of the assets that will be stored in the repository are
telecommunication and business.

Participant 18 thinks that robustness (defined to be mean time between failure),
reliability, and accurate documentation are key for software reuse.

His company has three levels of certification. Software is given a level according to its
ranking in five areas of concern: process conformance, functional completeness,
functional availability, architectural conformance, and organizational commitment. He
views certification as a means to record an asset's life cycle rather as a means of keeping
assets out of a repository.

No special testing or analysis would be done in addition to whatever had occurred
during development of the asset. He said that certification would be handled on a case
by case basis and that assets that didn't meet one of the three certification levels would
still be included in the repository. He felt that ultimate judgment should be left to the
user.

Miscellaneous Participants

The remaining participants fall under one of four categories: not currently reusing (due
to funding cuts or reuse is not being pushed by the company), never heard of reuse,
simply did not want to talk to me, and unable to be contacted. There are fifteen of these
participants.

The two people that didn't want to discuss reuse left me with the definite feeling that
they didn't want to divulge the fact that they weren't doing reuse.

Two people gave me some quotable material:

"Reuse? We're not doing anything by that name."

"Not really." "Uh, not really means, really, no."

The rest of the participants were either unable to be contacted or were not currently
active in reuse.

C-21

Appendix D - State-of-the-Art Report on Reuse Libraries

D-l/D-2

State-of-the-Art Report on Reuse Libraries

Many reuse programs were initiated in the late 80's as a potential solution to the
spiraling upward costs of producing custom software solutions for the Department of
Defense. The Army sponsored a library called RAPID (Reusable Ada Products for
Information Systems Development) which is now known as the Army Reuse Center.
Over the last few years the processes and assets of these libraries have evolved due to
changing missions and goals of their sponsors as well as introduction of new
technologies. In addition, the widespread availability of the Internet has encouraged
the establishment of reuse libraries as marketplaces for commercial vendors and created
a much larger and disparate pool of potential reusers.

Other projects related to reuse were sponsored by the Defense Advanced Research
Project Agency (DARPA). The goals of STARS program were to develop repeatable
architecture-based reuse processes, encourage development of domain analysis
methods and serve as a catalyst for technology transfer. The STARS program produced
a handbook The Conceptual Framework for Reuse Processes to serve as a guide for
developing reuse capabilities within an organization. They sponsored development
and application of four domain analysis methods:

• Feature Oriented Domain Analysis at Carnegie Mellon's Software Engineering
Institute.

. • Synthesis at the Software Productivity Consortium

• Organization Domain Modeling at Organon Motives

• Domain Analysis Process Model by Ruben Prieto-Diaz

STARS also sponsored a Technology Transition Affiliates program which transferred
their knowledge to many of the government and commercial organizations now
running reuse libraries (ASSET, CARDS, DISA).

The STARS program also funded the secretariat activities of the Reuse Library
Interoperability Group (RIG). The RIG is a working group of commercial and
government representatives dedicated to producing standards which allow reuse
libraries to intemperate. The working group currently has 3 standards forwarded to
IEEE for ballot. These are:

P1420.2 Basic Interoperability for Data Models for Reuse Libraries

P1420.1 Asset Certification Framework

D-3

P1430 Concept of Operations for Interoperating Reuse Libraries

The Basic Interoperability Data Model (BIDM) defines the minimal set of information
about assets that reuse libraries should be able to exchange to support interoperability.
The BIDM (Figure 1) is intended as a meta-model which defines attributes and
relationships for any kind of reusable asset. It does not contain information about a
reuse library's data model or communication protocol. The Asset Certification
Framework is an extension to BIDM which models information specific to various
methods of certification.

RIG Object
I Name

I 1 ^1 1
Asset Element Library Organization

Abstract Element Type Contact Is* Address
Cost Media Is Componsed Of* EMail
Date Of Information Fax
Distribution Statement Telephone
Domain
Is Composed Of*
Is Located In *
Is Made Of*
Keyword
Language
Restricttions
Security Classification
Target Environment
Uniqueld
Version
Version Date
Was Created By*

Figure 1. The BIDM meta model

D-4

This report is intended as an introduction into the current practices of both commercial
and government reuse libraries. It examines:

• Business model - What is the organization's goals and mission? Who are the
target customers

• Asset Production - Who produces and donates assets? What standards or
specifications must be met?

• Asset Selection - What tools and selection methodology are used?

• Asset Certification - What methods, techniques, tools or criteria are used?

The following libraries were surveyed:

IBM

Raytheon

Netlib

ASSET

Army Reuse Center

ELSA/MORE

DSRS

IBM's Component Store

Business Model - IBM's largest reuse project is to provide The Reusable Software
Component Store on the Internet to support external vendors supplying
complementary parts to IBM Object Technology products. While the library doesn't
support one particular domain, the parts can generally be categorized as OLE, ParcPlace
and OpenDoc components as well as Visual Basic class libraries and frameworks. IBM,
in conjunction with CyberSource Corporation, is sponsoring this library by paying for
its creation, operation and maintenance. IBM's motivating business case for
sponsorship is to stimulate use of their COTs products by providing a venue for their
customers to obtain additional parts of applications rather than develop these parts
again. An example is a dictionary or thesaurus part for a VisualAge application.
Customers which use these parts can then market their own developed parts in this

D-5

marketplace. Since such parts are small and low cost, it would not be cost effective for
vendors to individually market and distribute them.

Asset Production - Parts are produced by vendors external to the IBM organization.

Asset Selection - The parts will be purchased and electronically delivered on the
Internet. IBM has chosen to outsource the library creation, operation and maintenance
to an organization called Soßwarenet. The http site is http://components.software.net.
Softivarenet was recently identified by the Wall Street Journal as the largest provider of
Software on the Internet. Their large corporate clients include not only HP and IBM but
Microsoft is considering them as a potential pilot site. For IBM's component store the
selection tool is a user interface front end to a relational database. They are using a
faceted classification scheme with the following facets:

Function Area

Vendor

Language

Visual Tools

Platforms

National Language

Architecture

Asset Certification - The vendor submits the software (Figure 2) and accompanying
information template (Figure 3) The file(s) are scanned for viruses using Norton's
Utilities and then compressed and encrypted for delivery on the Internet. No quality
checks are done. IBM plans to collect user feedback to remove undesirable assets.
Standard commercial software agreements limit IBM's liability in situations of non-
performing software parts.

D-6

Technical specifications for electronic delivery:

1. Complete the component description template for each component. This template can
be found at the end of this page.

2. Create a document which includes your company name address, phone number, and
a contact person and his phone and/or email address.

3. Zip all relevant files (the template(s), the component(s), license.txt, any
documentation and any images into one file.

4. UUEncode the file and send it to skp@software.net. Alternatively, you may send the
zipped file as a MIME attachment to the same address. If you have an FTP site, we
can also get the zipped file from your site. Send mail to skp@software.net with the
location and password of the site.

Technical specifications for diskette delivery:

1. Create a directory for each component

2. In each directory, complete the component description template for each component.
This template can be found at the bottom of this page.

3. Create a subdirectory within each component directory called "data" and put all
component data files into the data directory.

4. Into the main directory place all other relevant materials. This includes the license.txt,
any documentation, and any images.

5. Create a document which includes your company, name, address, phone number, and
a contact person and his phone and/or email address.

6. Send the diskette(s) to:

CyberSource Corp.

Attention: Reusable Software Component Market Manager

1050 Chestnut Street, Suite 200

Menlo Park, CA 94025

Figure 2. Technical Specifications for Submission of Software Products

D-7

For each component fill in the appropriate information. This template is also available as
a text file which can be saved to disk.

Vendor Name: (name of the publisher)

Description: (name of the product)

Description 2: (include whether there is on-line documentation and anything unusual)

Price: (the price you will sell it at)

Retail Price: (if different from Price)

Vendor Part Number: (some vendors have a specific number for each product)

Serialized: (answer yes or no, depending on whether you give us serial numbers)

Area: (choose from the following listed below)

Visual Tools: (choose from the following listed below)

Platform: (choose from the following listed below)

National Language: (choose from the following listed below)

Architecture: (choose from the following listed below)

Area categories:

Application Services, Communication Services, Data Access Services, Development
Tools, Distribution Services, Object Services, Presentation Services, Systems
Management, Other

Language Vendor Categories:

Any, Borland, Digitalk, IBM, Microsoft, ParcPlace

Language Categories:

ANY, C/C++, Smalltalk, Basic, COBOL, TEXX

Visual Tools Categories:

ANY, DigiTalk - Visual Smalltalk, IBM - Visual Age C++, IBM - VisualAge SmallTalk,
IBM - Visual Gen, Microsoft - Visual Basic, Microsoft - Visual C++, ParcPlace -
VisualWorks, Powersoft - PowerBuilder

Platform

ANY, MAC, HP/UX, AIX, DOS, Netware NLM OS/2, Windows 3, Windows 95,
Windows NT, SunOS, Solaris, IBM DB2/2, Microsoft SQL, Server, Oracle 7, Sybase
SQL Server

National Language Categories:

ANY, USA ASCH

Architecture Categories:

ANY, OCX, OpenDoc, OLE, SOM/DSOM

Figure 3. Component Description Template

D-8

Raytheon

Business Model - Raytheon has an internal, non-commercial reuse library with assets to
support its government projects. Although the assets encompass a broad range of
domains, most of them are related to C4I which is key business are for Raytheon. The
assets are no only software; they include products from all phases of the lifecycle,
particularly software development plans. There are also proposals and COTs and
GOTs product evaluation. The business objective is that Raytheon's government
projects in these domains will be able to reuse these assets to lower their cost and
compress their schedules.

Asset Production - Most assets are the result of internal donations from company
projects. The library team supplements these with COTs products and shareware assets
from the Internet.

Asset Selection - Raytheon's library uses the World Wide Web with a firewall which
only allows access to its employees. All assets are described in a relational database
using the BIDM-meta-data. The search engine tool is Topic by Verity and Adobe
Acrobat is used to display documents. Raytheon considers the design and layout of its
search and meta-data screens to be company sensitive information and does not release
copies of them to the public in order to maintain a competitive edge. Other display and
translator tools are used as needed.

Asset Certification - No certification process is applied to COTs software assets.
Shareware assets found on the Internet are compiled and executed by the library team.
All internal software donation assets are subjected to the 21267A inspection process by
the project team before they are donated. The library team does not currently certify
these assets; however, they are considering implementing a certification program
similar to ASSET'S.

Netlib

Business Model - University of Tennessee's WWW digital library consists of multiple
libraries and supports two separate projects. Netlib was established in 1985 and is
managed by the University of Tennessee and AT&T Bell Labs. Its primary purpose was
to serve as a repository of mathematical routines. University of Tennessee is also a
member of the Center for Research on Parallel Computation (CRPC) and in 1994
became one of virtual distributed web sites for the National HPCC Software Exchange
(NHSE). The NHSE is a distributed collection of software, documents, data and
information of interest to the high performance computing community. The NHSE has

D-9

the goals of facilitating the development of discipline-oriented software and document
repositories and promoting contributions and use via the World Wide Web.

Important Note: Netlib is a very successful reuse library. As of November 1995, it has
had 7.8 million accesses to its library. (This includes browses of the http page.)

Asset Production - Components for Netlib are donated primarily by the members of the
academic mathematical and engineering research community. There are approximately
147 separate libraries Table 1.

Table 1. Netlib Libraries

Netlib Libraries

a fitpack mds random

access floppy microscope research

aicm fmm minpack scalapack

alliant fn misc sched

amos fortran mpfun scilib

ampl fortran-m mpi seispack

anl-reports fp na-digest sequent

apollo gcv napack sfmm

benchmark gmat netlib shpcc9

bib gnu news slap

bibnet g° numeralgo slatec

bihar graphics ode sodepack

blacs harwell odepack sparse

bias hence odrpack sparse-bias

bmp hompack opt sparspak

c hpf P4 specfun

c++ hypercube paragraph spin

cephes ieeecss paranoia srwn

chammp ijsa parkbench stoeplitz

cheney- image parmacs stringsearch
kincaid intercom pascal svdpack

D-10

Netlib Libraries

ciapack itpack pbwg templates

commercial jakef pdes tennessee

confdb kincaid- performance testbook

conformal cheney photo toeplitz

contin la-net picl toms

crc lanczos pltmg typesetting

ddsv lanz poly2 uncon

dierckx lapack polyhedra vanhuffel

diffpack laso popi vfftpack

domino lawson-
hanson

port vfnlib

eispack
linaig

posix voronoi

elefunt pppack xmagic

env
Unpack

list

IP

presto xnetlib

f2c problem-set yl2m

fdlibm pvm3
machinesx

fftpack quadpack

fishpack
magic
maspar

Development of the NHSE repository is carried out by the federal High Performance
Computing and Communications Program (HPCC). Components for NHSE are
developed by programs sponsored by the HPCC. These programs include:

• Advanced Software Technology and Algorithms (ASTA)

• High Performance Computing Systems

• Information Infrastructure Technology and Applications (UTA)

The components are grouped under the domains of:

D-ll

• Data Analysis and Visualization

• Parallet Processing Tools (Analyzing Environments, Languages, Compilers,
Libraries, Runtime Systems and Source Code)

• Scientific and Engineering Routines

• Numerical Programs and Routines (Computational Geometry, Linear Algebra,
Optimization, Partial Differential Equations

The components are grouped under the domains of:

• Data Analysis and Visualization

• Parallel Processing Tools (Analyzing Environments, Languages, Compilers,
Libraries, Runtime Systems and Source Code)

• Scientific and Engineering routines

• Numerical Programs and Routines (Computational Geometry, Linear Algebra,
Optimization, Partial Differential Equations)

Asset Selection - All assets are published on the World Wide Web and are accessible to
anyone in the Internet community.

Asset Certification - Authors submitting software to the NHSE are required to fill out a
Completed NHSE Software Submission Form (Figure 5) and request one of the
following review levels:

Unreviewed - The submission has not been reviewed by the NHSE for
conformance with software guidelines. This classification is for unreviewed
software available on an "as is" basis.

Partially reviewed - The submission has undergone a partial NHSE review to
verify conformance with the scope, completeness, documentation, and
construction guidelines. These particular guidelines are those that can be
verified through a visual inspection of the submission.

Reviewed. The submission has undergone a complete NHSE review to verify
conformance with the full review criteria. This classification requires peer-
review testing of the submitted software.

The Partially reviewed and Review levels require the use of PPG authentication
mechanism if the software is sent automatically. (Use of PPG is also highly

D-12

recommended for Unreviewed submissions). Software sent via surface mail requires
the signature of a notary public.

To receive the Partially reviewed rating, software submitted to the NHSE should
conform to the following guidelines:

Scope: Software submitted to the NHSE should provide a new capability in
numerical or high-performance computation or in support of those disciplines.

Completeness: Submissions must include all routines and drivers necessary for
users to run the software. Test problem sets and corresponding drivers must be
included if the software is to undergo peer-review testing for the Reviewed level.
Source code for widely available software used by the submission, bias and lapack
for example, need not be included as part of the submission.

Documentation: The software contains complete, understandable, correct
documentation on its use.

Construction: Submissions must adhere to good mathematical software
programming practice and, where feasible, to language standards. Software should
be constructed in a modular fashion to facilitate reusability. The use of language
checking tools, such as pfort or ftnchek or recommended.

To be accorded the reviewed status, the software must first have been accorded
the partially reviewed status. This precondition ensures that reviewers will be
able to access all the information needed to carry out the review over the
National Information Infrastructure.

D-13

Record maintainer:

Peter Newton<newton@cs.utk.edu>

Submitted for level:

Partially reviewed

URL:

Http://www.netlib.org/hence/hence-2.0-src.tar.z.uu
Title:

HeNCE (Heterogeneous Network Computing Environment

Version:

2.0

Author:

Adam Beguelin, Jack Dongarra, G.A. Geist, Robert Manchek, Keith Moore, Peter Newton,
Vaidy Sunderam

Contact:

hence@cs.utk.edu

Abstract

HeNCE (Heterogeneous Network Computing Environment) is an X-window based
software environment designed to assist scientists in developing parallel programs that run
on a network of computers. HeNCE provides the programmer with a high level abstraction for
specifying parallelism. HeNCE is based on a parallel programming paradigm where an
application program can be described by a graph. HeNCE graphs are variants of directed
acyclic graphs, or DAGS. Nodes of the graph represent subroutines and the arcs represent data
dependencies. Individual nodes are executed under PVM. HeNCE is composed of integrated
graphical tools for creating, compiling, executing, and analyzing HeNCE programs. HeNCE
relies on the PVM system for process initialization and communication. The HeNCE
programmer, however, will never explicitly write PVM code. During or after execution, HeNCE
displays an event-ordered animation of application execution, enabling the visualization of
relative computational speeds, processor utilization, and load imbalances.

Environment

UNIX with Berkeley sockets and TCP/IP stack; PVM 3.3 or later, X11R4 or later server,
fonts and libraries (including ALL of libXll.a, HbXaw.a, libXmu.a, libXt.a, libXext.a, imake and
xmkmf, UNIX yacc and lex (re-implementations such as bison, byacc, or flex will NOT generally
work); either K7R or ANSI C. Minimum 1024x768 screen size.

http://www.netlib.org/hence/index.html

Figure 5. Example of a Completed NHSE Software Submission Form

D-14

The author of partially reviewed software may submit his software for full review by
filling out and submitting the NHSE submission change form and selection the
Reviewed level. The software will be reviewed according to the following criteria:

Documentation: The software contains complete, understandable, correct
documentation on its use.

Correctness: The software is relatively bug-free and works as advertised on all
provided data sets and on data sets provided by the reviewer according to the
documentation.

Soundness: The methods employed by the software are sound for solving the
problem it is designed for, as described in the documentation.

Usability: The software has an understandable user interface and is easy to use
at the level of a typical NHSE client.

Efficiency: The software runs fast enough, in that slow speed does not make it an
ineffective tool.

Once software is submitted, it will be assigned by a semi-automatic procedure to an
associate editor (one of the editorial board members). That editor will recruit two to six
reviewers to review the software according to the criteria from the last section. When
the review(s) are returned, the associate editor will make the final decision about
whether to accept the software and will inform the author of the decision. If the
software is accepted, the assigned associated editor will prepare the review abstract for
use by the NHSE.

After the software is reviewed, one of two things happens. If it is not accepted, the
author will be so informed and anonymous copies of the review or reviews will be
provided. If it is accepted, the author will be shown a review abstract summarizing the
reviewer comments. This abstract will be available to anyone who accesses the software
through the NHSE. If the author finds the abstract unacceptable, he or she may
withdraw the software and resubmit it for review at a later date.

SAIC/ASSET

Business Model - SAIC/ASSET (Asset Source for Software Engineering Technology)
was originally established under the LSTARS Program to develop a national software
repository for reusable software assets and information about software reuse. ASSET

D-15

initially specialized in reusable Ada Software components., Ada standards and
bindings, and in documents written specifically to promote software reuse or
documents describing reuse products, processes, procedures or lessons learned. ASSET
is now transitioning to a private enterprise as a division of SAIC. They offer the
following services via the World Wide Web:

-Worldwide Software Resource Discovery (WSRD). The WSRD library contains
documents, software components, vendor advertisements and information on
software reuse practices. There is information on both public domain and
commercial assets. All software components in the WSRD are free but a user
must have an ASSET account to download them.

-On-Line Information of Reusable Technology, Publications and Conferences

-Reusable software Asset Brokerage Services is ASSET'S new commercial
Electronic Market Place which provides a forum for vendors to sell products or
set up a WWW home page advertisement.

Asset Production -Assets are produced by organizations or individuals external
to the organization. For the WSRD most assets are donated by government
programs and are free of charge. ASSET'S criteria for evaluating assets is
outlined in the document "Criteria and Implementation Procedures for
Evaluation of Reusable Software Engineering Assets" prepared by Software
Engineering Technology, Inc. and dated March 28,1992. Producers are expected
to provide documentation (Figure 6) and meta-data (Figure 7), based on the
BIDM, about the asset. Most assets are either software components or
documents.

D-16

an abstract
a user's guide or instructions on how to use
a list of files making up the asset (preferably in compilation order)

installation / implementation instructions

sample input/output
design and/or requirements documents

test programs, procedures and/or results
description of the environment under which asset was developed/tested

known limitations of software
a list of tools needed to interpret or use the asset

warranties or disclaimers
statement of distribution rights/licenses
list of special formats of files (e.g. PostScript, InterLeaf, SGML)

Figure 6. Recommended Documentation

D-17

name =>

alternatejname =>
version =>

release_date =>

asset_size =>

asset_type =>

distribution_code =>
domain =>

keyword =>

referencenumber=>

computer_language=>
nationaManguage =>
computer_environment
=>

format=>
author name=>
abstract=>

support_available=>

contact_person=>
begin person

name=>

street_address=>
city=>

state_code=>

zip_code

country

phone
fax
email

end person
producer=>

begin organizations
name

streetaddress=>

city=>

state_code =>

zip_code =>

country =>

phone =>

fax =>

email =>

end organization

Figure 7. Required Meta-Data

supplier =>

begin person
name =>

street_address =>
city =>

state_code =>

zip_code =>

country =>

phone =>
fax =>
email =>

end person
supply_date =>

end person

Products submitted to the Electronic Marketplace require company and product logos
and abstracts as well as the following meta-data per product offering:

• Version number

• Keywords

• Computer Languages

D-18

•

Hardware / operating system / compiler

Native Language (available documentation languages)

Product Release Date

• URL

• E-mail address

Asset Selection - Selection is done through keyword search. The search is done all
words in the title, abstract, meta-data as well as the asset itself. The library screens also
offer four upper level screen choices for selection under Domain, Collection, Asset
Name, and Asset Identifier.

Asset Certification - Under advice from their lawyer, ASSET do not call their levels
"certification" levels but rather "evaluation" levels. The term certification implies a
legal liability that evaluation does not. Level 1 evaluation checks that the meta-data,
documentation and asset exist and are complete. Level 2 checks that the meta-data and
documentation actually match the asset. Level 3 provides assurance of the performance
of the asset.

The Army Reuse Center

Business Model - The Army Reuse Center (ARC), formerly a division of the Software
Development Center Washington (SDC-W) and originally named the Reusable Ada
Products for Information Systems Development (RAPID), was established as a
directorate of the US Army Information Systems Software Center (USAISSC) on 1
January 1994. Its stated mission is "to develop, implement, maintain, and administer a
total reuse program supporting the entire software development life cycle, and thus
help the Army fulfill the Department of Defense (DoD) objective to institute reusable,
maintainable, and reliable software."

Although ARC's origins are as a dialup reuse library to support reuse and development
of Ada software assets, it is now located on the WWW
(http://arc_www.belvoir.army.mil) and provides a full range of products and services.
These include:

• Reuse Management

D-19

• Reuse Education

• Domain Analysis

• Domain Implementation

• The ARC Library

The services are offered for a fee to cover the ARC's costs. For example, the startup
costs to provide domain repository services are 25K a year with recurring annual costs
of $20K a year.

Asset Production - Assets in the ARC library include submissions from supporting DoD
reuse programs and commercial reusable assets. They include requirements,
specifications, architectures, design diagrams, code and documentation. The Reuse
Implementation Strategy for Horizontal Reuse across the US Army's Vertical Domains
has targeted the following organizations for development of reuse programs to donate
assets:

PEO Aviation

PEO Armored systems Modernization

PEO Command and Control Systems

PEO Communications

PEO Cruise Missiles and Unmanned Aerial Vehicles

PEO Field Artillery Systems

PEO Missile Defense

PEO Standard Army Management Information System

PEO Tactical Missiles

PEO Tactical Wheeled Vehicles

Simulation, Training and Instrumentation Command

D-20

Highly successful reuse programs within PEO ST AMIS and the USAISSC have donated
many of the assets.

Asset Selection - The ARC Library uses DISA's Defense Software Repository System
(DSRS) as their library and selection tool. The search mechanism is a faceted
classification scheme in which the user interface runs on top of an RDBMS. (See DSRS
description for a list of facets and more complete description of the tool.) The user may
search on metrics such as reusability, maintainability, portability, number of uses,
problem reports, and level of certification.

Asset Certification - The following activities are performed by Army Reuse Center
Personnel for software assets in the ARC library at these certification levels:

• Level 1 - Code is installed "as is"

- Code does not compile

- Certification forms are complete.

- An abstract is written.

- AdaMat is run.

- Cataloging (facet terms) is finished.

- In-line comments are added for clarity.

• Level 2 - Level 1 plus code compiles correctly.

• Level 3 - Levels 1 & 2 plus test drivers are provided.

• Level 4 - Levels 1,2 & 3 plus documentation such as reference and users'
manuals are provided.

The Army Reuse Center is planning on adding additional quality metrics to these levels
in FY 96.

D-21

ELSA/MORE

Business Model - The origins of ELSA/MORE can be found in AdaNET established as a
direct reply to an unsolicited white paper to congress, proposing the creation of a model
clearinghouse to answer the 1987 Congressional Ada Mandate. As originally
envisioned, the clearinghouse would provide users of the Ada language with
information and repository services while contributing to NASA's own use and
adaptation of Ada software. AdaNET would therefore, enhance NASA's software
development efforts and eventually transfer software technology to the public domain.
AdaNET's mission was simply to house Ada code that could be extracted and
incorporated as building blocks into development of new systems. AdaNET was part
of the Repository Based Software Engineering (RBSE) program, sponsored by the
Technology Utilization Division at NASA Headquarters and administered by the
Johnson Space Center. In addition to operating a software lifecycle repository, RBSE
promotes software engineering technology transfer, academic and instructional support
for reuse programs, the use the common software engineering standards and practices,
software reuse technology research, and interoperability between reuse
lib r aries / repositories.

As the project matured, the processes, products, mechanisms, and tools developed to
support the early vision became as important, if not more so, than the component
holdings themselves. Thus the original vision has been adjusted from a solely software
distribution repository to a process driven library, supporting various reuse
methodologies and models. The program evolved into a software engineering
environment which supports reuse, engineering environment which supports reuse,
reengineering, and domain analysis. As a result of this evolution, the name AdaNET no
longer adequately represented the project's scope. To better align the project and the
library with the technological advances of the Internet eta, AdaNET was retitled
Electronic Library Services and Applications, or ELSA. ELSA is a service, also NASA
funded, that is located on the WWW (http://rbse.mountain.net) provided by
MountainNet, a commercial contractor, which provides access to a large selection of
software. MountainNet is charged with commercializing ELSA library mechanism
MORE into a product called MOREplus.

In addition to commercializing MOREplus, MountainNet has transitioned this
technology by using it to set up nine additional reuse libraries. There are three at
commercial companies (bank, aerospace, and computer manufacturer) two DoD, and
four additional NASA sites. MountainNet also sells commercial software through their
Pinnacle Mall WWW site.

D-22

Asset Production - Assets in ELSA have been produced by NASA programs or are
Internet shareware identified by MountainNet staff. Assets from the Internet are not
physically stored in the ELSA library. Instead only meta-data about these assets and
URL pointers to their location on the Internet are stored. There is currently no way to
verify when these assets at other locations have been moved or changed. ELSA/MORE
is also interoperable with ASSET'S library. Again the assets are not physically stored in
the library, rather the library mechanism provides the way to view distributed assets at
a more remote location. Figure 8 shows various classes and collections of the
ELSA/MORE library.

MORE Class Browser

Sub-Classes:

Articles and Newsletters

Bibliographies

Books and Proceedings

Catalogs

COTS Toos and
Environments

Directories

External Resources

External Software

External Tools

Reports and Papers

Software

Standards

Terminology

Tutorials

User Guides

MORE Collections (alphabetic)

Browsers:

Customer Support

Database Gateways

HTML Tools

Legal Issues

Libraries and Servers

Library Interfaces and Protocols

Main Collection

Math

Matrices

Mnet Tutorials

Polynomials

Reuse

Routines and Algorithms

Search

Search Engines

Server Software

Sort

Statistical Packages

Viewers

WWW Information and
Utilization

Figure 8. Classes and collections of the ELSA/MORE library

D-23

Asset Selection - The ELSA library mechanism is a product called MOREplus.
MOREplus is an information management tool consisting of a set of user interface
executables that operate in conjunction with hypertext servers to provide access to a
relational database. Access to data is achieved through hypertext links that take the
user to database records or to sites maintained on the Web for information not
physically sorted within the database. Access to proprietary or sensitive data can be
restricted to designated groups of users and administrators. MOREplus uses both
natural language and pattern match searches as well as hierarchical and alphabetical
classification browsers. The collection of assets that is open for the general public can
be viewed by:

• MORE Collection Browser

• MORE Class Browser

• MORE Collections (alphabetic)

• MORE Collections (hierarchical)

• MORE Natural Language Search

• MORE Pattern Search

Asset Certification - The ELSA repository uses a process called AQUIP (Acquisition,
Qualification, Utilization, and Investigation Process) to qualify non-commercial assets
which are actually stored in the repository (versus those at distributed sites). Phase 1
involves classification by meta-data. Phase 2 checks for completeness. The software
tools AD AL and FDADL are used on Ada and FORTRAN software respectively. Phase
3 tests the assets for functionality and interfaces and provides asset usage information.

DISA's Defense Software Repository System (DSRS)

Business Model - DISA's software reuse program is primarily focused on the
enhancement of its tool, the DSRS, and supports the installation and maintenance of this
tool at various DoD sites. The DSRS is an accredited automated repository for storing
and retrieving reusable assets. Reuse programs using this tool are:

• Naval Undersea Warfare Center (NUWC) - Newport, RI

• Maxwell AFB - Montgomery, AL

D-24

Ft. Sill, OK

McClellan AFB, CA

Defense Logistics Agency (DLA) - Columbus, OH

National Security Agency (NSA) - Ft. Meade, MD

NCTS-Washington - Washington, DC

DISA Software Reuse Center (SRC)- Falls Church, VA

Army Reuse Center - Fort Belvoir, VA

US Marine Corps - Quantico, VA

DISA's repository is located on the WWW
(http://ssedl.ims.disa/mil/srp/dsrspage.html). It serves as a central collection point
for quality assets, and facilities software reuse by offering developers the opportunity to
match their requirements with existing software products. Although primarily used to
support reuse and development of object-oriented Ada development products, the
DSRS can support storage and retrieval of other than Ada related products.

Asset Selection - Users describe their requirements, using the faceted classification
scheme, through a series of menu-driven screens. The repository identifies one or more
suitable software assets from its collection. The DSRS provides the user with the
capability to browse an individual asset or analyze a group of assets. Users may view
the abstract, classification description, supporting documentation, and numerical
measures for each asset. Additionally, the DSRS provides an on-line help facility, asset
relationship and dependence information, session maintenance, and user suggestion
facility. The list of facets available to the user are:

ALGORITHM (e.g., binary, conversion, linear, shell, etc.)

CERTIFICATION LEVEL (e.g., level_l, level_2, support etc.)

COMPONENT TYPE (e.g., datajile, design, implementation, etc.)

DATA REPRESENTATION (e.g., alphabetic, binary, string, etc.)

ENVIRONMENT (e.g., AT&T 3B2/UNIX,IBM PC VAX/VMS, etc.)

D-25

FUNCTION (e.g., compile, sort, sum, truncate, update, etc.)

LANGUAGE (e.g., Ada, Assembly,Booch, Cobol, Yourdon, etc.)

OBJECT (e.g., accounting, array, binding, model, vector, etc.)

UNIT TYPE (e.g., dbms, program, subsystem, types_package, etc.)

ORIGINATOR (e.g., Army_Reuse_Center, Gunter-AFB, STARS, etc.)

The list of all facet terms for each facet is too lengthy to be provided here.

Asset Production - The DSRS staff does not produce assets and in the past assets have
been submitted by various DoD projects. The program is now focusing on
interoperation of reuse libraries to provide their library users with access to more assets
through a virtual library system. ASSET, CARDS and DSRS reuse libraries have
developed an interoperability capability as a first step toward realizing the DoD
Software Reuse Initiative's goal of building a "virtual library" A user interacts with the
virtual library through the local user interface. It is not necessary for the user to know
where the asset resides, nor even to know that it is not stored locally. The ability of a
DSRS user to extract a particular asset from a remote library is based on the distribution
class (group) privileges the user has been assigned.

Asset Certification - DSRS adopted the same certification levels as the Army Reuse
Center. There are possible plans to update or augment these levels in the near future.

Conclusion

What conclusions can be reached by this brief survey of reuse libraries? Certainly
Internet technology has drastically changed the methods of operation of reuse libraries.
Most libraries now reside on the WWW and use hypertext technology to publish their
assets. Libraries are utilizing the distributive technologies of the Web to provide a
wider variety of assets to their user. Most libraries rely on the collection of accurate
meta data to aid their users in searching for appropriate assets. Any new processes or
technologies introduced for reuse libraries must be based on the latest distributive
Internet technologies to have any chance of wide spread adoption.

It can be noticed that there is an unfortunate lack of stringent quality control or
certification on the assets installed in these libraries. Why is this? Most reuse libraries,
both commercial and government, must be self supporting through cost reimbursable

D-26

fees^ Thus the services they provide must be ones that their customers in a capitalistic
market place demand. It is not clear why reuse customers are not demanding even
minimal assurances about the software they are reusing. One issue could be the lack of
legal clarity as to who is responsible and liable for incorrectly performing software
Another is that the labor intensive, manual work currently associated with most reuse
libraries certification processes is too expensive for what is essentially an
undocumented monetary return. Quicker, automated certification methods and
quantifiable benefits must be discovered and documented if software certification is to
nave widespread success.

»U.S. GOVERNMENT PRINTING OFFICE: 19 97-509-127-61067

D-27

MISSION
OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Material
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence,
reliability science, electro-magnetic technology, photonics, signal
processing, and computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

